
Wireless Networks

Shigang Chen
Min Chen
Qingjun Xiao

Traffic
Measurement
for Big
Network Data

Wireless Networks

Series editor

Xuemin (Sherman) Shen
University of Waterloo, Waterloo, Ontario, Canada

More information about this series at http://www.springer.com/series/14180

http://www.springer.com/series/14180

Shigang Chen • Min Chen • Qingjun Xiao

Traffic Measurement
for Big Network Data

123

Shigang Chen
Department of Computer &

Information Science
University of Florida
Gainesville, FL, USA

Qingjun Xiao
School of Computer Science and

Engineering
Southeast University of China
Nanjing, Jiangsu, China

Min Chen
Department of Computer &

Information Science
University of Florida
Gainesville, FL, USA

This work is supported in part by the National Science Foundation under grants CNS-1409797 and
STC-1562485.

ISSN 2366-1186 ISSN 2366-1445 (electronic)
Wireless Networks
ISBN 978-3-319-47339-0 ISBN 978-3-319-47340-6 (eBook)
DOI 10.1007/978-3-319-47340-6

Library of Congress Control Number: 2016954314

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1 Introduction . 1
1.1 Big Network Data . 1
1.2 Online Challenge . 2
1.3 Offline Challenge . 2
1.4 Fundamental Primitives . 3
1.5 Scalable Counter Architectures for Per-Flow Size Measurement 4
1.6 Hyper-Compact Virtual Estimators for Per-Flow

Cardinality Measurement . 4
1.7 Memory-Efficient Estimators for Persistent Spread Measurement . . . 6
1.8 Outline of the Book . 7
References . 8

2 Per-Flow Size Measurement . 11
2.1 Problem Statement . 11
2.2 Prior Art . 13
2.3 Design of Counter Tree Architecture . 14

2.3.1 Motivation. 14
2.3.2 Two-Dimensional Counter Sharing . 15
2.3.3 Counter Tree Architecture . 17
2.3.4 Counting Range . 19
2.3.5 Design Overview . 20

2.4 Online Packet Recording . 20
2.4.1 Recording . 20
2.4.2 Number of Memory Accesses . 21

2.5 Counter Tree-Based Estimation . 23
2.5.1 CTE Method . 23
2.5.2 Analysis of Os . 25

2.6 Counter Tree-Based Maximum Likelihood Estimation 26
2.6.1 CTM Method . 26
2.6.2 Analysis of Os . 28

v

vi Contents

2.7 Enhanced Counter Tree Architecture . 29
2.7.1 Motivation. 29
2.7.2 Counters with Status Bits. 30
2.7.3 Recording and Estimation . 31

2.8 Experimental Evaluation. 32
2.8.1 Experiment Setup . 32
2.8.2 Processing Time for Recording a Packet . 33
2.8.3 Estimation Accuracy and Range . 33
2.8.4 Impact of b, r, and d . 37
2.8.5 Comparison of CTE and E-CTE . 38
2.8.6 Scalability of Counter Tree . 40

2.9 Summary . 41
References . 44

3 Per-Flow Cardinality Measurement . 47
3.1 Problem Statement . 47
3.2 Prior Art . 48

3.2.1 Hash Table and Bitmap . 48
3.2.2 MultiResolutionBitmap and PCSA . 48
3.2.3 LogLog and HyperLogLog. 50
3.2.4 Performance Summary . 51

3.3 Register Sharing and Virtual Estimators . 53
3.3.1 Motivation. 53
3.3.2 Sharing at Bit Level? . 53
3.3.3 Register Sharing and Virtual Estimators . 54
3.3.4 Counter Sharing for Flow Size—A Different Problem 55

3.4 A Framework for Virtual-Estimator Solutions. 56
3.5 Virtual HyperLogLog Estimator . 58

3.5.1 Record Flow Elements in Virtual Estimator. 59
3.5.2 Flow Cardinality Estimation . 59

3.6 Estimation Bias and Variance . 60
3.6.1 Estimation Bias . 61
3.6.2 Estimation Variance . 62
3.6.3 Relative Standard Error . 63

3.7 Experimental Evaluation. 65
3.7.1 Estimation Accuracy in Tight Memory . 65
3.7.2 Impact of Value s on vHLL . 69
3.7.3 Impact of Overall Traffic . 71
3.7.4 A Case Study: Detect Super Destinations . 72

3.8 Summary . 74
References . 75

Contents vii

4 Persistent Spread Measurement . 77
4.1 Problem Statement . 77
4.2 Preliminary Solutions . 80

4.2.1 Hash Table Solutions . 80
4.2.2 Bitmap-Based Method. 81

4.3 Estimator Based on Intersection Bitmap . 82
4.3.1 Analysis of Real Network Traces . 82
4.3.2 Persistent Spread Estimator . 84

4.4 Analysis of Bitmap-Based Estimator . 87
4.5 Multi-Virtual Bitmap Estimator . 89

4.5.1 Physical Bitmap Encoding . 91
4.5.2 Persistent Spread Estimation . 92

4.6 Simulation Evaluation . 93
4.6.1 Experiment Setup . 94
4.6.2 Estimation Accuracy and Operating Range 95
4.6.3 Impact of Time Period t on Accuracy. 97
4.6.4 Impact of Signal-to-Noise Ratio SNRi on Accuracy 98

4.7 Related Work . 99
4.8 Summary . 101
References . 103

Chapter 1
Introduction

1.1 Big Network Data

There is hardly any other data set whose size can rival the big network data that flows
on the Internet. The annual global IP traffic is expected to pass zettabyte by 2016
[6], which is a billion terabytes. High-speed routers can now forward network traffic
at hundreds of terabits per second (Cisco CRS-3). In large enterprise networks,
traffic records (such as NetFlow) and logs from routers, switches, intrusion detection
systems, and firewalls overwhelm storage space as they are continuously produced;
typically, such traffic records are kept only for a limited time frame before being
deleted to free space for new information. Big data also happens at the network
edge. For a few examples, Google handles over 40,000 search queries every second
[27], 500 million tweets are produced per day [32], and major online retailers such
as Alibaba process over a billion sales annually. As these data accumulate day
by day and year by year, mining them for knowledge becomes a daunting task
that requires tremendous resources. This book aims to develop new compact and
fast online measurement methods that reduce big network data to measurement
summaries orders-of-magnitude smaller than what the traditional methods can do.
The new methods hold the promise of allowing routers to perform measurement on
large network traffic in real time using small cache memory on network processors,
allowing enterprise systems to store their traffic records (in the form of summaries)
over a far longer time frame, and allowing users with ordinary computing resources
to perform analysis on big network data.

© Springer International Publishing AG 2017
S. Chen et al., Traffic Measurement for Big Network Data, Wireless Networks,
DOI 10.1007/978-3-319-47340-6_1

1

2 1 Introduction

1.2 Online Challenge

Modern routers forward packets from incoming ports to outgoing ports via switch-
ing fabric. To process packets in real time, online modules for traffic measurement,
packet scheduling, access control, and quality of service are implemented on net-
work processors, bypassing main memory, and CPU almost entirely [20, 24, 28, 37].
Commonly used cache memory on network processor chips is SRAM, typically
a few megabytes. Increasing on-chip memory to more than 10 MB is technically
feasible, but it comes with a much higher price tag and access time is longer.
There is a huge incentive to keep on-chip memory small because smaller memory
can be made faster and cheaper. Off-chip SRAM or embedded DRAM (built on
3-D stacking interconnect or packaging on the same module) can be made larger.
However, it is slower to access, and the bandwidth between a network processor
and its off-chip memory can be a performance bottleneck. Hence, on-chip memory
remains the first choice for online network functions that are designed to match the
line speed.

To make the matter more challenging, limited on-chip memory may have
to be shared among routing/performance/measurement/security functions that are
implemented on the same chip. Each function can only use a fraction of the available
space. Depending on their relative importance, some functions may be allocated tiny
portions of the on-chip memory, whereas the amount of data they have to process
and store can be extremely large in high-speed networks. The great disparity in
memory demand and supply requires us to implement online functions, including
real-time traffic measurement, as compact as possible. As an example, if the amount
of on-chip memory allocated to a traffic measurement function is 1 Mb but there
are 1M concurrent flows, with 1 bit per flow, can we still perform per-flow traffic
measurement? How about 10M concurrent flows with the same memory allocation?
This is what we want to achieve through this book.

1.3 Offline Challenge

The space problem also exists offline where disks are used to store network traffic
data over time for long-term analysis. As such data are constantly produced, there
is a limit on how long they can be stored. With a given amount of disk space, the
smaller we can reduce the traffic data, the longer we can keep the data before it has
to be removed.

The space issue also arises when we analyze big data. Suppose an analyst
who has access to web search records wants to profile the number of searches
for each keyword/phrase/question/sentence. This information is useful to online
social/economical/opinion trend studies [12]. The profiling may require billions
of counters, and more sophisticated data structures will be needed if the analyst
wants to remove duplicate searches by the same user—this is called cardinality

1.4 Fundamental Primitives 3

measurement (or estimation) as we will explain shortly. According to [14], various
data analysis systems at Google, such as Sawzall, Dremel, and PowerDrill, estimate
the cardinalities of very large data sets on a daily basis, which presents a challenge
in computational resources, and memory in particular—for the PowerDrill system,
a non-negligible fraction of queries historically could not be computed because they
exceeded the available memory.

As another example, let’s consider an analyst with access to billions of sale
records from an online retailer. Suppose she wants to analyze purchase associations.
Each association is defined as the purchase of one product followed by the purchase
of another product from the same client. Profiling the frequency of each association
helps the retailer follow up with product recommendations to its clients after they
make purchases. However, such analysis requires pairing up the sale records. The
multiplicative effort of pairing may result in an extraordinary number of purchase
associations, much larger than the number of sale records. Although the analyst may
resort to a datacenter for needed resources, it would certainly be welcome if we can
make the same job doable on a regular laptop, even when the number of available
memory bits on the laptop is far fewer than the number of purchase associations.
(The same is true for the previous example of profiling search record.) This is what
we want to achieve through this project.

1.4 Fundamental Primitives

In this book, we model network data as a set of flows, each of which is the
abstraction of a data subset defined based on the measurement requirement. For
example, we may treat all packets from the same source address as a flow, i.e., per-
source flow. In this case, the flow identifier is the source address in the packet header.
Similarly, we may define per-destination flows, per-source/destination flows, TCP
flows, WWW flows, P2P flows, or other application-specific flows. We also need to
define elements in the flows to be measured. Depending on the application needs, the
elements may be destination addresses, source addresses, ports, or even keywords
that appear in the packets of a flow.

Big network data consists of millions or even billions of flows. We may measure
the flow size—which is what NetFlow [3] does—in number of bytes or packets; here,
each byte (or packet) is considered as an element to be counted. We may measure the
flow cardinality—which is what firewalls often do—in number of distinct elements
in each flow. This is a harder problem because in order to remove the duplicate
elements in the flow, we need a way to remember which elements we have seen
in the past. Or we may measure the persistent spread of a flow: For a certain
number of consecutive periods, if an element of a flow appears in each period, we
call it a persistent element. The persistent spread of the flow over a given number of
periods is defined as the distinct number of persistent elements in the flow. This book
presents three important fundamental online functions: per-flow size measurement,
persistent spread measurement, and per-flow cardinality measurement.

4 1 Introduction

1.5 Scalable Counter Architectures for Per-Flow Size
Measurement

Measuring flow size has many important applications. We may measure the number
of packets in each TCP flow, the data rate of each voice-over-IP session, the number
of bytes that each host downloads, the number of SYN packets from each source
address, or the number of ACK packets sent to each address. Such information
is very useful to service provision, capacity planning, accounting and billing, and
anomaly detection [13, 16]. For instance, measuring the number of SYN/ACK
packets provides a means for detecting SYN attacks [34]. For another example,
if we use client addresses as flow identifiers, per-flow size measurement provides
each client’s traffic volume, which serves as the basis for usage-based billing [20]
and graceful service differentiation, where a client’s service priority gracefully
drops as he over-spends his resource quota. Studying per-flow statistics over
consecutive measurement periods may help us discover network access patterns and,
together with user profiling, reveal geographic/demographic traffic distributions
among users. Such information will assist Internet service providers and application
developers to align network resource allocation with the majority’s needs [17]. In
the event of a botnet attack where there is a sudden surge of small flows, a security
administrator may analyze the change in the flow size distribution [7, 15] and use
per-flow information to compile the list of candidate bots that contribute to the
change, helping to narrow down the scope for further investigation.

In this book, we first present a novel SRAM-only counter architecture called
Counter Tree. The contributions are summarized as follows:

1. We design a two-dimensional counter sharing scheme, where each counter can
be shared not only by different flows, but also among different virtual counters.
Thanks to this scheme, a significant memory save can be achieved, making
Counter Tree work well under a tight memory where existing schemes do not
work.

2. Counter Tree reserves more significant bits for larger flows, which dramatically
extends the estimation range when compared with existing schemes.

3. Counter Tree has a very high processing speed. Encoding a packet only requires a
little more than 2 memory accesses on average, which is asymptotically optimal.

4. Counter Tree supports an instantaneous query of the size of an arbitrary flow.
Two offline decoding methods are designed to estimate flow sizes. The extensive
experiments with real network trace demonstrate both methods can generate
accurate results even under extremely tight memory, e.g., 2 bits per flow.

1.6 Hyper-Compact Virtual Estimators for Per-Flow
Cardinality Measurement

Measuring flow cardinality also has many applications. Address-scan detection is to
measure the number of distinct destination addresses (elements) in each per-source

1.6 Hyper-Compact Virtual Estimators for Per-Flow Cardinality Measurement 5

flow. If a source is found to contact too many destinations, it is flagged as a
potential scanner. In case of random scanning in worm attacks, such cardinality
measurement provides the infection rate of a worm [4, 23, 30]. Similarly, port-
scan detection [29] is to measure the number of distinct destination ports in each
per-source/destination flow. In another application example, we treat all packets
sent to a common destination as a per-destination flow and count the number of
distinct source addresses in each flow. If we observe the cardinality of a certain
flow suddenly surges, it may signal a DDoS attack [21, 22, 25, 26, 33] against the
destination address of the flow. For other applications, a large server farm may learn
the popularity of its content by tracking the number of distinct users that access each
file, where all accesses to a file form an abstract flow; an institutional gateway may
determine the popularity of external web content for caching priority by tracking
the number of outbound web requests for each web content [36], where all requests
from different users to a common URL form a flow. Flow cardinality can also help
identify P2P hosts [2, 9, 33, 37].

For the big data cases at network edge in the introduction, if we treat all
search records that query the same phrase as a flow, we may define the cardinality
of each flow as the number of distinct source addresses that have performed
the search, which suggests the popularity of the phrase and is therefore useful
in social/economical/disease trend studies [12]. If we treat each online purchase
association as a flow, we may define the flow cardinality as the number of distinct
costumers who have purchased the two products in the association, which provides
information for targeted advertisement.

To deal with big data consisting of a very large number of flows, we must
conserve memory space when designing a cardinality estimation module. For this
purpose, a series of solutions were developed in the past, including PCSA [10],
MultiresolutionBitmap [9] (which is a generalization of LinearCounting [35]),
MinCount [1], LogLog [8], and HyperLogLog [11]. They all allocate a separate
data structure, called estimator, for every flow. Each estimator contains a certain
number of registers, bitmaps, or other elementary data structures. The most compact
estimator in [11] requires hundreds of bytes to ensure a large estimation range and
a good estimation accuracy, which is still too much for measuring big network data.

After decades of development [1, 8–11, 35], it appears to be very difficult to
further compress the size of an individual estimator much below hundreds of bits,
without sacrificing estimation range or accuracy. Recently, an interesting idea is
to let different estimators (each for one flow) share bits [18, 19, 36], so that bits
unused by one can be picked up by another. We discover that sharing bits is actually
inefficient because of too much noise introduced between estimators. Sharing space
is good, but it should be done differently at the register level, not at the bit level,
where a register is a multi-bit data structure that will be introduced later. Moreover,
sharing has only been applied to bitmap and PCSA [10], an early work dated back
to 1985. We develop a framework of virtual estimators which enables memory
sharing for the recent cardinality estimation solutions, including LogLog [8] and
HyperLogLog [11], with the latter being the best existing work. Finally, we fully
develop the virtual HyperLogLog solution, with a new procedure for recording

6 1 Introduction

per-flow information in the shared space, a set of formulas for estimating per-flow
cardinality with noise removal, and the analytical results for estimation error under
register sharing. We show that the new solution can work in a tight memory space
of less than 1 bit per flow or even one tenth of a bit per flow—a quest that has never
been realized before.

1.7 Memory-Efficient Estimators for Persistent Spread
Measurement

The traditional superspreader detector, which is designed to identify flows with
abnormally large spreads, has many applications in monitoring network anoma-
lies [33, 38]. For example, if a spread estimator can measure the number of distinct
destinations in each per-source flow, then it can be used to detect network scanners
(or infected hosts), which probe a large number of different destinations. Another
example is the spread estimator of per-destination flows, which can be applied to
detecting the well-known DDoS attack, in which a malicious party uses an army of
compromised hosts to overwhelm a destination server.

However, the superspreader detector may fail to discover malicious activities,
if the attackers deliberately suppress their traffic volumes and spreads to escape
the detection. In these cases, measuring persistent flow cardinality may find its
applications. Consider two examples where flow cardinality alone is insufficient.
First, scanners can be identified if they send probes to too many destination
addresses, i.e., the cardinalities of per-source flows are large. However, a stealthy
scanner may intentionally reduce its probing rate to control its flow cardinality in
order to evade detection. Even with a reduced probing rate, after enough time, the
scanner can discover systems with vulnerabilities to exploit. Measuring persistent
flow cardinality can help identify this type of scanners. As a scanner probes different
destination addresses over time, its persistent flow cardinality is zero. Therefore,
modest flow cardinality but usually low persistent cardinality signals a low-rate
scanner that wanders in the destination address space.

In the second example, DDoS attacks may be identified if too many clients
send requests to a server, i.e., the cardinality of a per-destination flow is too
high. However, with a smaller number of attacking machines, stealthy denial-
of-quality attacks do not attempt to overwhelm the target server with excessive
requests, but to degrade its performance. If the number of attacking machines is
similar to the number of legitimate users, we will not see unusual flow cardinality.
In this case, measuring persistent flow cardinality may help. According to our
analysis of real-world network traces from CAIDA [31], the continuous interaction
between legitimate users and their target servers is normally shorter than 20 min. For
stealthy denial-of-quality attacks, since their objective is to degrade the performance
of target server over a long period, the attacking machines will send requests
persistently to the target server, resulting in a significant persistent cardinality over
time that is higher than the usual value.

1.8 Outline of the Book 7

This book provides an implementation of the persistent spread estimator based
on a data structure called multi-virtual bitmaps. The size of on-chip SRAM space
it requires does not relate with the number of time periods t, but depends on the
number of flow elements that pass through a router in just one time period. More
precisely, in each time period, its required size of SRAM is less than one bit per-
flow element.

Even given such limited space, our algorithm is able to deliver high estimation
accuracy. The evaluation results show that our estimator is 90 % more accurate than
a continuous variant of Flajolet–Martin sketches [5]. Such an improvement comes
from our observation that in real network traffic traces, the continuous interaction
of legitimate users with a HTTP/HTTPs server is pretty short in time duration,
less than 20 min typically. Hence, it is possible to filter the traffic from the short-
term behaviors of legitimate users, and retain the long-term persistent traffic that is
suspicious to link with stealthy DDoS attacks or network scanning. Moreover, the
estimation accuracy of our algorithm improves when the number of measurement
periods t grows, because it is able to filter the short-term traffic of legitimate users
more effectively. The accuracy gain as t grows is a useful feature that allows a
network administrator to increase t arbitrarily to distinguish persistent elements
from normal transient traffic.

Our algorithm provides another advantage that extends the operating range of
producing effective measurements by hundreds of times, as compared with the
traditional bitmap method, which allocates each flow with an equal-sized and
separated bitmap. In contrast, our method allows different flows to share bits from
a common memory pool. By drawing bits randomly from the pool, an individual
flow constructs a virtual bitmap, for the estimation of its persistent spread. Through
bit sharing, large flows can “borrow” bits from small flows to extend their effective
operating range. We have evaluated the performance of our algorithm, including
memory expense, estimation accuracy, and operating range, by experiments based
on real network traffic traces.

1.8 Outline of the Book

The rest of the book is organized as follows. Chapter 2 presents a scalable counter
architecture for per-flow size measurement based on two-dimensional counter
sharing. In this chapter, we provide a novel tree structure of counters for packet
recording/decoding, which mixes per-flow information randomly in a tight SRAM
space for compactness. Chapter 3 presents a framework of virtual estimators based
on register (multi-bit) level sharing of a common memory space. We can apply
the framework to various solutions of cardinality estimation, achieving far better
memory efficiency than the best existing work. Chapter 4 presents an efficient
scheme for persistent spread measurement based on bit sharing in physical bitmap,
which records the elements of all flows during a measurement period to a single
bitmap. The bitmaps built in different measurement periods can be combined for
estimating the persistent spread of any flow.

8 1 Introduction

References

1. Bar-yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Luca: counting distinct
elements in a data stream. In: Proceedings of RANDOM: Workshop on Randomization and
Approximation (2002)

2. Cao, J., Jin, Y., Chen, A., Bu, T., Zhang, Z.: Identifying high cardinality internet hosts. In:
Proceedings of IEEE INFOCOM (2009)

3. Cisco IOS NetFlow: Available at http://www.cisco.com/c/en/us/products/ios-nx-os-software/
ios-netflow/index.html (2005)

4. Chen, S., Tang, Y.: Slowing down internet worms. In: Proceedings of IEEE ICDCS (2004)
5. Chen, A., Cao, J., Bu, T.: A simple and efficient estimation method for stream expression

cardinalities. In: Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB ’07, pp. 171–182 (2007)

6. Cisco: The Zettabyte EraTrends and Analysis (2015). Available at http://www.cisco.com/c/en/
us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity
_WP.html

7. Duffield, N., Lund, C., Thorup, M.: Estimating flow distributions from sampled flow statistics.
In: Proceedings of ACM SIGCOMM (2003)

8. Durand, M., Flajolet, P.: Loglog counting of large cardinalities. In: ESA: European Symposia
on Algorithms, pp. 605–617 (2003)

9. Estan, C., Varghese, G., Fish, M.: Bitmap algorithms for counting active flows on high-speed
links. IEEE/ACM Trans. Netw. 14(5), 925–937 (2006)

10. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for database applications. J. Com-
put. Syst. Sci. 31(2), 182–209 (1985)

11. Flajolet, P., Fusy, E., Gandouet, O., Meunier., F.: HyperLogLog: the analysis of a near-optimal
cardinality estimation algorithm. In: Proceedings of AOFA: International Conference on
Analysis of Algorithms (2007)

12. Google Trends: Available at https://www.google.com/trends/
13. Hao, F., Kodialam, M., Lakshman, T.V.: ACCEL-RATE: a faster mechanism for memory

efficient per-flow traffic estimation. In: Proceedings of ACM SIGMETRICS/Performance
(2004)

14. Heule, S., Nunkesser, M., Hall, A.: HyperLogLog in practice: algorithmic engineering of a
state-of-the-art cardinality estimation algorithm. In: Proceedings of EDBT (2013)

15. Kumar, A., Sung, M., Xu, J., Wang, J.: Data streaming algorithms for efficient and accurate
estimation of flow size distribution. In: Proceedings of ACM SIGMETRICS (2004)

16. Kumar, A., Xu, J., Wang, J., Spatschek, O., Li, L.: Space-code bloom filter for efficient per-
flow traffic measurement. In: Proceedings of IEEE INFOCOM (2004). IEEE JSAC 24(12),
2327–2339 (2006)

17. Li, T., Chen, S., Ling, Y.: Fast and compact per-flow traffic measurement through randomized
counter sharing. In: Proceedings of IEEE INFOCOM, pp. 1799–1807 (2011)

18. Li, T., Chen, S., Luo, W., Zhang, M., Qiao, Y.: Spreader classification based on optimal
dynamic bit sharing. IEEE/ACM Trans. Netw. 21(3), 817–830 (2013)

19. Lieven, P., Scheuermann, B.: High-speed per-flow traffic measurement with probabilistic
multiplicity counting. In: Proceedings of IEEE INFOCOM, pp. 1–9 (2010). doi:10.1109/INF-
COM.2010.5461921

20. Lu, Y., Montanari, A., Prabhakar, B., Dharmapurikar, S., Kabbani, A.: Counter Braids: a novel
counter architecture for per-flow measurement. In: Proceedings of ACM SIGMETRICS (2008)

21. Mahajan, P., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.: Controlling high
bandwidth aggregates in the network. Comput. Commun. Rev. 32(3), 62–73 (2002)

22. Moore, D., Voelker, G., Savage, S.: Inferring internet denial of service activity. In: Proceedings
of USENIX Security Symposium’ 2001 (2001)

23. Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Internet quarantine: requirements for
containing self-propagating code. In: Proceedings of IEEE INFOCOM (2003)

http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity
_WP.html
https://www.google.com/trends/
http://dx.doi.org/10.1109/INFCOM.2010.5461921

References 9

24. Moshref, M., Yu, M., Govindan, R., Vahdat, A.: Dream: dynamic resource allocation for
software-defined measurement. In: Proceedings of ACM SIGCOMM, pp. 419–430 (2014)

25. Park, K., Lee, H.: On the effectiveness of route-based packet filtering for distributed DoS attack
prevention in power-law internets. In: Proceedings of ACM SIGCOMM’2001 (2001)

26. Plonka, D.: FlowScan: a network traffic flow reporting and visualization tool. In: Proceedings
of USENIX LISA (2000)

27. Smith, G.: By the numbers: 80+ amazing google search statistics and facts (2015). Avail-
able at http://expandedramblings.com/index.php/by-the-numbers-a-gigantic-list-of-google-
stats-and-facts/

28. Song, H., Hao, F., Kodialam, M., Lakshman, T.: IPv6 lookups using distributed and load
balanced bloom filters for 100Gbps core router line cards. In: Proceedings of IEEE INFOCOM
(2009)

29. Staniford, S., Hoagland, J., McAlerney, J.: Practical automated detection of stealthy portscans.
J. Comput. Secur. 10, 105–136 (2002)

30. Staniford, S., Paxson, V., Weaver, N.: How to 0wn the internet in your spare time. In:
Proceedings of USENIX Security Symposium (2002)

31. The CAIDA UCSD Anonymized 2013 Internet Traces - January 17: http://www.caida.org/
data/passive/passive_2013_dataset.xml (2013)

32. Twitter Usage Statistics: Available at http://www.internetlivestats.com/twitter-statistics/ (2013)
33. Venkatataman, S., Song, D., Gibbons, P., Blum, A.: New streaming algorithms for fast

detection of superspreaders. In: Proceedings of NDSS (2005)
34. Wang, H., Zhang, D., Shin, K.G.: SYN-dog: sniffing SYN Flooding Sources. In: Proceedings

of 22nd International Conference on Distributed Computing Systems (ICDCS’02) (2002)
35. Whang, K.Y., Vander-Zanden, B.T., Taylor, H.M.: A linear-time probabilistic counting algo-

rithm for database applications. ACM Trans. Database Syst. 15(2), 208–229 (1990)
36. Yoon, M., Li, T., Chen, S., Peir, J.K.: Fit a spread estimator in small memory. In: Proceedings

of IEEE INFOCOM (2009)
37. Zhao, Q., Xu, J., Kumar, A.: Detection of super sources and destinations in high-speed

networks: algorithms, analysis and evaluation. IEEE JASC 24(10), 1840–1852 (2006)
38. Zhao, Q., Xu, J., Kumar, A.: Detection of super sources and destinations in high-speed

networks: algorithms, analysis and evaluation. IEEE JSAC 24(10) (2006)

http://expandedramblings.com/index.php/by-the-numbers-a-gigantic-list-of-google-stats-and-facts/
http://expandedramblings.com/index.php/by-the-numbers-a-gigantic-list-of-google-stats-and-facts/
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.internetlivestats.com/twitter-statistics/

Chapter 2
Per-Flow Size Measurement

Per-flow size measurement, which is to count the number of packets for each
active flow during a certain measurement period, has many applications in usage
accounting, traffic engineering, service provision and anomaly detection. In order to
maintain the high throughput of routers or switchers, the per-flow size measurement
module should use high-bandwidth SRAM that allows fast memory accesses. Due
to the limited SRAM space, exact counting, which requires to keep a counter for
each flow, does not scale to measure big network data consisting of numerous flows.
Some recent work takes a different design path to accurately estimate the flow sizes
using counter architectures that can fit into tight SRAM. However, existing counter
architectures have some limitations, either still requiring considerable SRAM space,
or having a very small estimation range. This chapter presents a scalable counter
architecture, called Counter Tree, which leverages a two-dimensional counter
sharing technique to achieve far better memory efficiency and significantly extend
estimation range. Furthermore, we improve the performance of Counter Tree by
adding a status bit to each counter. The extensive experiments with real network
trace demonstrate that the new architecture can produce accurate estimates for flows
of all sizes even under a very tight memory space, e.g., 1 bit per flow.

2.1 Problem Statement

Per-flow size measurement is one of the fundamental problems in network traffic
measurement [8, 10–13, 15–17]. It is to count the number of packets (or called
flow size) for each active flow during a measurement period, e.g., 1 min or the time
for processing 10 million packets. The flows under measurement can be per-source
flows, per-destination flows, per-source/destination flows, TCP flows, http flows, or
any user-defined logical flows. Each flow is uniquely identified by its flow label—
for example, the flow labels for per-source flows are the source addresses.

© Springer International Publishing AG 2017
S. Chen et al., Traffic Measurement for Big Network Data, Wireless Networks,
DOI 10.1007/978-3-319-47340-6_2

11

12 2 Per-Flow Size Measurement

Three metrics are used to evaluate the performance of different per-flow size
measurement schemes:

1. Memory requirement: Due to the constraint of SRAM space, we want to use
as small memory as possible for per-flow size measurement. Here we focus on
the memory requirement for implementing the counter architectures, while the
memory overhead for flow label collection is not our concern. Some memory-
efficient approaches [12] for flow label collection can be found in literature.

2. Processing time: To keep up with the line speeds, the processing time for encod-
ing a packet should be small, such that the implementation of the measurement
module will not deteriorate throughput. In most counter architectures [8, 10, 13],
the processing time for encoding a packet mainly results from the memory
accesses and hash computations.

3. Measurement accuracy: Given a particular memory space, the measurement
results of flow sizes should be as accurate as possible. Suppose the true size
of a flow is s, and the measured size is Os. We use the relative bias Bias. Os

s / and

relative standard error StdErr. Os
s / to evaluate the measurement accuracy, which

are defined as follows:

Bias.
Os
s
/ D E.

Os
s
/ � 1; (2.1)

StdErr.
Os
s
/ D

r
Var.
Os
s
/ D

p
Var.Os/

s
: (2.2)

Notations used in the chapter are given in Table 2.1 for quick reference.

Table 2.1 Notations

Symbols Descriptions

s True size of a flow

Os Estimated size of a flow

M Available memory space in bits

b Number of bits in each physical counter

m Number of leaf nodes in the Counter Tree

d Degree of each non-leaf node in the Counter Tree

r Number of virtual counters for each flow

h Height of the Counter Tree

CŒi� The ith physical counter

VŒi� The ith virtual counter

k Number of leaf nodes in a subtree counter

n Total number of packets in the measurement period

2.2 Prior Art 13

2.2 Prior Art

With tremendous number of flows under measurement for big network data, it
is impossible to keep an individual counter for each flow in SRAM. Therefore,
exact counting generally adopts a hybrid SRAM–DRAM architecture [15–17],
where small counters in SRAM are incremented at high speed, and occasionally
written back to larger counters in DRAM. However, the hybrid architecture incurs
very costly SRAM-to-DRAM updates. Furthermore, the flow-to-counter association
requires considerable SRAM [13].

To fit the measurement module in tight SRAM, some schemes only give the
distribution of flow sizes [3, 7], or measure the sizes of large flows [5, 6]. Some
recent work takes a different design path to accurately estimate the flow sizes
instead of counting their exact sizes, thereby reducing memory overhead. The state-
of-the-art estimation approaches include bitmap-based MSCBF, and counter-based
Counter Braids and randomized counter sharing scheme.

The Multiresolution Space-Code Bloom Filter (MSCBF) [8] employs multiple
Bloom filters to encode packets with different sampling probabilities. Filters with
high sampling probabilities can keep track of small flows, while filters with
low sampling probabilities can track large flows. However, the bitmap nature of
MRSCBF determines that it is not memory efficient for counting [10]. TinyTable
[4] is a novel hash table-based data structure that represents multiset membership.
It improves the query and update efficiency of Bloom filters. However, for per-flow
traffic measurement, it still requires a high memory cost, which is tens of bits per
flow [4].

The Counter Braids (CB) [12, 13] is a counter architecture for flow size
measurement. It avoids the storage of flow-to-counter association by hashing flows
to counters on the fly, and it reduces memory requirement by sharing counters
among flows. A typical implementation of CB consists of two layers of counters,
and employs three hash functions. To encode a packet, it is hashed to three counters
based on its flow label, which are all incremented by one. If any of the first-layer
counter overflows, another three second-layer counters will be used. Since each
counter is shared by multiple flows, it counts all associated flows. Therefore, the
counters essentially form a set of linear equations of the flow sizes. A message
passing reconstruction algorithm was used to estimate the flow sizes in an iterative
way. CB can recover the exact flow sizes when sufficient memory is available,
e.g., 10 bits per flow. However, CB has three limitations. First, it performs 6
(occasionally 12) memory accesses to encode one packet. Second, it yields very
biased or even meaningless estimates under a tight memory, e.g., less than 4 pits
per flow. In fact, we find that the estimation results of CB do not converge even
with 8 bits per flow, though it may occasionally produce very accurate results if we
manually terminate the process after some iterations. Third, CB does not support
instantaneous queries of flow sizes. All flow sizes must be decoded together at the
end of a measurement period.

14 2 Per-Flow Size Measurement

A new data encoding/decoding scheme, called randomized counter sharing [10],
was designed to further reduce the memory requirement and processing time of per-
flow size measurement. The idea is to split each flow among a number of counters
(called the storage vector of the flow) that are randomly selected from a counter
pool. When encoding a packet of a particular flow, it is randomly mapped to a
counter of the flow’s storage vector, and the counter is then incremented by one. This
scheme requires only 2 memory accesses for encoding one packet, achieving the
optimal processing speed. Moreover, it can still yield reasonably accurate estimates
under a tight memory space where CB no longer works. Two estimation methods
CSM and MLM are used to estimate flow sizes. The most serious problem of
this scheme is that its estimation range is limited, e.g., a few thousands in a
typical implementation. For large flows with sizes beyond the estimation range, the
scheme leads to very negatively biased estimates since overflowed counters lose
information. In the journal version [11], some approaches were provided to extend
the estimation range, which, however, cannot address the issue fundamentally. The
first approach is to increase the length of each counter or the size of the storage
vector. However, this approach degrades estimation accuracy since fewer counters
are available or each counter is shared by more flows. Following a reasonable
parameter setting, the estimation range is still very limited. The second approach
employs a sampling module. Each arriving packet is sampled with a probability
p before being encoded to a counter. Aggressive sampling not only introduces
significant error [8], but also fails to measure some small size or even moderate-
size flows. For example, if we let p D 0:001, flows with sizes less than 1000 are
hardly be captured. The final approach resorts to the hybrid SRAM/DRAM design,
which requires costly SRAM-to-DRAM updates.

2.3 Design of Counter Tree Architecture

In this section, we provide a novel scalable counter architecture called Counter
Tree [1].

2.3.1 Motivation

In spite of the large number of flows in networks, many studies reveal a common
observation that a small percentage of large flows account for a high percentage of
the traffic (also known as the heavy-tailed distribution). The study in [14] showed
that the top 15 % of the destination prefixes (per-destination flows) account for over
95 % of the byte traffic. As an example, we use a network trace obtained from the
main gateway of University of Florida, which contains about 68 million TCP flows
and 750 million packets. The distribution of flow sizes is illustrated in Fig. 2.1,
where each point represents the number (y coordinate) of flows that have a particular

2.3 Design of Counter Tree Architecture 15

Fig. 2.1 Distribution of flow
sizes, where each point
represents the number
(y coordinate) of flows that
have a particular size
(x coordinate)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

nu
m

be
r

of
 f
lo

w
s

flow size

size (x coordinate). This log-scale figure demonstrates that the vast majority of flows
have small sizes, while only a small number of flows have large sizes. Without
knowing the flow sizes beforehand (which are in fact what we want to measure), the
length of counters should be set according to the maximum flow size, which may
need to be as large as 64 bits [15]. However, if a flow turns out to be small, e.g., with
a size of 1, most of the bits in its counter will be wasted. This observation motivates
us to save memory by utilizing the waste.

2.3.2 Two-Dimensional Counter Sharing

To reduce the memory waste caused by small flows, we should enable counter
sharing. Therefore, we develop a novel counter sharing technique called two-
dimensional counter sharing, which includes horizontal counter sharing and vertical
counter sharing. The available memory space is divided into small physical counters,
which are logically organized on different layers. Horizontal counter sharing means
that any counter on any layer can be shared by different flows, and vertical counter
sharing means that each higher-layer counter can be shared by multiple lower-layer
counters, acting as their high-order bits.

In horizontal counter sharing, each counter is shared by multiple flows. The
rationale is to let large flows borrow memory from small or medium flows that will
not fully use their counters. But each counter will have to store the combined size
of multiple flows particularly if the number of counters is much smaller than the
number of flows. To alleviate this problem, the CountMin approach [2] maps each
flow to multiple counters and use the smallest counter value as the flow size. The
problems are that each packet of a flow will result in multiple counter updates (which
reduces the processing throughput multiple folds) and that the smallest counter may
still be the sum of multiple flow sizes, causing positive bias in estimation. Our new
design in the next subsection will keep the benefit of counter sharing, while ensuring
that approximately one counter is updated per packet and in the meantime avoiding

16 2 Per-Flow Size Measurement

f g

low-order bits

high-order bits

C[0] C[1] C[2]

C[3]

Fig. 2.2 An illustration of two-dimensional countering sharing, where CŒ0�, CŒ1�, CŒ2�, and CŒ3�

are four small physical counters, and f and g are two flows. Each low-order counter can be shared
by multiple flows, and each high-order counter can be shared by multiple low-order counters as
their high-order bits

the positive bias in estimation. The idea of our design is to split each flow to multiple
counters through random mapping, and each counter can therefore be shared by
different flows. In the example of Fig. 2.2, the counter CŒ1� is shared by two flows f
and g. If f is a small flow and g is a large flow, g can help make full use of CŒ1�.

Horizontal counter sharing allows some bits wasted by small or medium flows
to be used by large flows. However, since small flows account for a dominant
percentage of network flows, many bits in counters occupied only by small flows
can still be wasted. This observation leads to the idea of vertical counter sharing
below, which allows the more significant bits (i.e., higher-order bits) to be shared by
more flows. As an example, the counter CŒ3� in Fig. 2.2 serves as extra high-order
bits for CŒ0�, CŒ1�, and CŒ2�, and any flows mapped to CŒ0�, CŒ1�, and CŒ2� can use
CŒ3� when necessary.

We introduce the concept of virtual counters, each of which is the concatenation
of multiple small physical counters, which are also called the component counters
of the virtual counter. Physical counters do not share their bits, but virtual counters
share bits by sharing their component counters, particularly those representing more
significant bits in virtual counters. In essence, vertical counter sharing implements
seamless dynamic memory allocation based on flow sizes, without having to allocate
or deallocate physical counters of different sizes on the fly (which is too costly to
implement on chip). Suppose we have three physical counters, each with 3 bits. The
first counter is allocated to f , the second is for g, while the third is reserved for
whoever needs it. As a result, g will use the third counter when the second counter
overflows. These three component counters only require 9 bits to successfully record
f and g.

The scheme of two-dimensional counter sharing not only contributes to signif-
icant memory saving, but it also introduces noise among virtual counters due to
space sharing. Fortunately, we can employ statistical tools to remove such noise
as we will show shortly. In the sequel, when we use the word “counter" without
preceding it with “virtual," we mean a physical (component) counter by default
unless the context clearly suggests otherwise.

2.3 Design of Counter Tree Architecture 17

2.3.3 Counter Tree Architecture

We design a Counter Tree architecture to implement two-dimensional counter
sharing. The architecture can be used to record flows of all sizes (small, medium,
or large). Given a memory space of M bits, we divide it into small counters, each
consisting of b bits. We organize those counters into a tree structure from the bottom
up. Let the leaf nodes be the layer 0 which consists of m counters. The degree of
each non-leaf node is d. Therefore, the number of counters on a upper layer is 1

d of
it lower layer. Denote the height of the tree by h, with layers indexed from 0 to h�1.
We have the following constraint:

h�1X
jD0

m

dj
� b � M: (2.3)

Therefore,

m � dh�1M

.dh � 1/b
: (2.4)

If the .h � 1/th layer contains more than one counter, namely m
dh�1 > 1, we put

an extra node as the root of the tree, called virtual root. Figure 2.3 gives an example
of organizing the 14 counters into a binary tree with three layers, where m D 8 and
d D 2. Starting from a leaf node CŒi� (0 � i < m), the h counters along the path to
the root form a virtual counter, denoted as VŒi�. As a result, there will be m virtual
counters in total, denoted as an array V .

Starting from CŒi� at layer 0, the counter at layer j (0 � j < h) that VŒi� will
include, denoted by VŒi�Œj�, is

VŒi�Œj� D CŒb i

dj
c C

jX
tD1

m

dt�1
�: (2.5)

Fig. 2.3 An example of organizing counters into a binary tree

18 2 Per-Flow Size Measurement

Fig. 2.4 Virtual counters and virtual counter arrays for flows. The virtual counter array for a
particular flow consists of multiple counters pseudo-randomly chosen from the counters

Therefore, the Counter Tree in Fig. 2.3 can yield 8 virtual counters as shown
in the upper half of Fig. 2.4. We can see that a counter located at a higher layer
(which corresponds to more significant bits in a virtual counter) is shared by more
virtual counters but will be used only by large flows. This embodies the idea of
vertical counter sharing. Later we will show that each virtual counter can be shared
by multiple flows, corresponding to the idea of horizontal counter sharing.

We note that multiple layers of counters are also used by Counter Braids [12, 13]
under a different design. For Counter Braids, each flow is randomly mapped to u
counters at the bottom level, where u may be 3. Any packet of a flow will cause
all u counters of the flow to increase by one. Hence, each counter records the total
number of packets for all flows that are mapped to it. That is, each counter represents
a linear equation on the sizes of some flows (that are mapped to the counter). When
there are enough counters, there will be enough linear equations, which we can
solve (by the method of message passing in [13]) for the sizes of all flows. But this
approach requires updating u counters per packet and it needs a sufficient number of
counters. What about the memory space is too tight and thus the number of counters
is insufficient? Our method can work under such tight space where Counter Braids
no longer work. In Counter Tree, each flow is randomly mapped to r counters at the
bottom level, where r should be large, e.g., in hundreds. Any packet of a flow will
cause one of the r counters to increase by one. Therefore, each counter no longer

2.3 Design of Counter Tree Architecture 19

represents a linear equation on the sizes of some flows, which also means that the
estimation method of Counter Braids cannot be applied here. Instead, we view the
r counters of a flow f as a whole, whose sum carries both the size of flow f and
the noise from other flows due to counter sharing. We do not know exactly who
those other flows are, but nevertheless the noise can be statistically measured and
removed.

2.3.4 Counting Range

The counting range of each virtual counter is 2bh. To extend the counting range, one
way is to increase b. However, larger b mean fewer counters are available, e.g., if
we double b, the number of available counters will be reduced by half. Moreover, if
b is set overly large, some bits in each counter will be wasted. Alternatively, we
can increase h for the purpose of extending the counting range, which is more
memory efficient as we will show shortly. Suppose M0 bytes are allocated for layer-
0 counters, which translates into M0

b counters. Hence, the height of the Counter Tree

can be up to logd
M0

b C 1. Since the number of counters on the jth layers is reduced
to 1

d of the .j � 1/th layer, the following memory constraint should hold:

h�1X
jD0

M0

dj
� M:

Since
Ph�1

jD0
M0

dj < d
d�1

M0, and we have

M0 >
d � 1

d
M; (2.6)

which means that only 1
d of the memory needs to be reserved for non-leaf counters.

Therefore, each virtual counter can have up to b�.logd
M0

b C1/ bits, which translates

to a counting range of 2b.logd
M0

b C1/. In contrast, the counting range of each counter
is only 2b � 1. This means that as long as we spare 1

d M memory for upper layers

and set M0 D d�1
d M, we can extend the counting range from 2b � 1 to 2b.logd

M0

b C1/.
The randomized counter sharing scheme [11] is a special case of Counter Tree with
h D 1. Since it only records flows by one-layer physical counters, the estimation
range of randomized counter sharing scheme is very limited, whereas the estimation
range of Counter Tree with multiple layers is much larger. As an example, suppose
M D 1 MB, b D 4, d D 2, and M0 is therefore 0.5 MB. Hence, the counting
range of each counter is 24 � 1 = 15, while each virtual counter can count up to
24.log2

0:5 MB
4bit C1/ D 284 packets. Therefore, Counter Tree can significantly extend the

estimation range to accommodate large flows.

20 2 Per-Flow Size Measurement

2.3.5 Design Overview

Our traffic measurement function using Counter Tree consists of two modules.
The online packet recording module stores the information of arriving packets
in the Counter Tree. For each packet, it is mapped to a virtual counter by one
hash computation and then the virtual counter will be updated, which needs
approximately two memory accesses. At the end of each measurement period, the
Counter Tree is stored to the disk and all counters are then reset to zeros. The offline
data decoding module estimates the flow sizes. It is performed by a designated
offline computer. Two methods are designed for separating the information about
the size of a flow from the noise in the virtual counters. The first one is called
Counter Tree base Estimation (CTE). The second one is based on the maximum
likelihood estimation method (CTM). Both methods can yield accurate estimates
for flow sizes.

2.4 Online Packet Recording

In this section, we show how to record a packet in the Counter Tree.

2.4.1 Recording

Consider an arbitrary flow f . We pseudo-randomly choose r (r � m) out of the
m virtual counters to logically form a virtual counter array of f , denoted by Vf .
The selection can be achieved by applying r independent hash functions to the flow
label. The ith counter of Vf , denoted by Vf Œi�, is chosen from V as follows:

Vf Œi� D VŒhi.f /�; (2.7)

where 0 � i < r and hi.�/ is a hash function 2 Œ0; m� 1�. To reduce the overhead of
implementing r independent hash functions, we can use one master hash function H
and a set S of random seeds, and let

hi.f / D H.f ˚ SŒi�/; (2.8)

where ˚ is the XOR operator. Since r � m, the probability that r distinct virtual
counters are selected by the hash functions to form the virtual counter array of f is
.m

r/
mr � 1. The bottom half of Fig. 2.4 illustrates the virtual counter arrays for f and g,

where r D 3 and the virtual counter VŒ4� is shared by both flows. We point out that
our design does not limit the number of flows to be supported. There can be many
more flows than the number of virtual vectors, m.

2.4 Online Packet Recording 21

Fig. 2.5 The process for
recording a packet to a virtual
counter

At the beginning of each measurement period, all counters are initialized to 0s.
When a packet of flow f arrives, the router extracts its flow label f , chooses a virtual
counter from Vf uniformly at random, and increments that virtual counter by 1. More
specifically, the router generates a random number i 2 Œ0; r� 1�, computes the hash
value u D hi.f /, and sets VŒu� VŒu�C1. Note that the update of VŒu� may involve
the updates of multiple counters. Based on (2.5), the router first fetches counter
CŒu� from memory and increases it by 1. If CŒu� does not overflow, the recording
for this packet is done. Otherwise, the router further fetches CŒb u

d c C m�, and adds
the overflowed 1 to CŒb u

d c C m�. The process continues until no overflow happens
or the counter on the root has been reached. In the latter case, the virtual counter is
overflowed beyond the upper bound that it is designed to handle. Figure 2.5 gives
an example of the online recording process for a packet of f . Suppose b D 4 (i.e.,
the counting range of each counter is 15), h D 3, and VŒ0� is chosen for recording
that packet. The router first fetches CŒ0� whose value is 15. After adding 1 to CŒ0�,
CŒ0� becomes 0 and leads to an overflow. Hence, the router writes back CŒ0� D 0,
further fetches CŒ8� with value 9, and assigns CŒ8� CŒ8� C 1. Since CŒ8� D 10

does overflow, the router writes it back and the recording process terminates.

2.4.2 Number of Memory Accesses

To record a packet, the router at least needs to read and write 1 counter, which
requires 2 memory accesses. Hence, the lower bound of the number of memory
accesses for recording a packet is 2. In the worst case, the router needs to update h
counters, which requires 2h memory accesses. The good thing is that the router
needs to fetch another counter only when the current counter overflows, which
happens after recording at least 2b packets. Hence, the amortized number of memory
accesses per packet is much smaller than the worst case. We have the following
theorem:

Theorem 1. A tight upper bound of the amortized number of memory accesses for
recording a packet in the Counter Tree is 2C 2

2b�1
, where b is length of each counter.

Proof. Suppose n packets are recorded. Each packet causes one counter at layer 0
to be updated, requiring 2 memory accesses. In total, there are 2n memory accesses
at layer 0. The number of counter overflows at layer 0 is at most b n

2b c � n
2b , which

means that counters at layer 1 will be updated for no more than n
2b times, requiring

22 2 Per-Flow Size Measurement

Fig. 2.6 Amortized number
of memory accesses per
packet with respect to b

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

2 4 6 8 10

m
em

or
y

ac
ce

ss
es

b

no more than 2n
2b memory accesses. By simple induction, we know that the number of

memory accesses at layer j is no more than 2n
2jb . Hence, the total number of memory

accesses over all layers is no more than

h�1X
jD0

2n

2jb
D 2n.1 � 1

2bh /

1 � 1
2b

< 2n.1C 1

2b � 1
/:

Hence, the amortized number of memory accesses per packet is no more than

2n.1C 1
2b�1

/

n
D 2C 2

2b � 1
: (2.9)

The upper bound is tight when n � 0 .mod 2.h�1/b/ and exactly n
2.jC1/b overflows

happen at the jth layer, 0 � j < h � 1.

Figure 2.6 shows the upper bound of the amortized number of memory accesses
for recording a packet with respect to b. We find that it quickly converges to 2 (the
lower bound) with the increase of b. In contrast, Counter Braids need to perform at
least 2u memory accesses since each packet is recorded by u counters on each layer,
where u can be 3.

The non-deterministic counter access time per packet may introduce stalls into
the datapath pipeline, resulting in reduced datapath bandwidth. Counter Braids
[12, 13] and any other counter architectures with variable access time [17] face the
same problem. The key issue is how frequent the variable access time will occur. In
case that access time for most packets is constant but only varies for a tiny fraction of
packets, the impact on datapath bandwidth will be limited, particularly if we are able
to reduce the chance of variable access time to an arbitrarily small level through a
system parameter. This is the case for Counter Tree. More specifically, the overflow
of a layer-0 counter occurs once every 2b packets. On average, one out of 2b packets
has longer access time because a counter at the higher layer is involved, but the
other 2b � 1 packets have constant access time because they do not cause counter

2.5 Counter Tree-Based Estimation 23

overflow. The fraction of all packets that have longer access time is 1
2b , which can

be exponentially reduced by increasing the value of b, i.e., the number of bits in a
counter. For example, when b D 6, only 1.6 % of all packets have variable access
time and 98.4 % of the packets have constant access time. Suppose each counter
overflow causes the pipeline to stall for 10� of the normal access time. The overall
access time will increase by approximately 14.4 %, and the throughput therefore
decreases by approximately 12.6 %.

2.5 Counter Tree-Based Estimation

After the measurement period, offline estimation should be performed to recover
flow sizes from the Counter Tree. Counter Tree estimates flow sizes through some
statistical methods, and it supports efficient query on the size of an arbitrary flow,
without having to compute the sizes of other flows as Counter Braids do (the
computation overhead is high). In this section, we first present and analyze the
Counter Tree-based Estimation (CTE) method.

2.5.1 CTE Method

Consider the ith virtual counter Vf Œi� in the virtual counter array of flow f . According
to (2.7), Vf Œi� D VŒu�, where u D hi.f /. We know VŒu� records some of f ’s packets,
as well as the noise introduced by other flows. There are two sources of noise: First,
VŒu� is shared by other flows; Second, all component counters in VŒu� except CŒu�

are shared by other virtual counters. To accurately recover the number of packets in
f recorded by VŒu�, we need to figure out how to remove such noise.

The component counter of VŒu� at the highest layer is CŒv�, where v D b u
dh�1 c CPh�1

tD1
m

dt�1 according to (2.5). Consider the subtree rooted at CŒv�, denoted as
T , consisting of dh�1 leaf nodes, which correspond to dh�1 virtual counters. Let
k D dh�1. Due to counter sharing, flows mapped to those k virtual counters may
introduce noise to VŒu�. We treat T as an aggregate, called a subtree counter,
when dealing with noise. We denote the value of T by a random variable Xi.
As an example, in Fig. 2.3, the value of the subtree counter rooted at CŒ12� is
CŒ12� � 22b C .CŒ8� C CŒ9�/ � 2b C .CŒ0� C CŒ1� C CŒ2� C CŒ3�/. Note that the
total number n of packets in all flows can be obtained from the entire Counter Tree
in a similar way. Let random variable Yi be the portion of Xi contributed by flow f ,
and Zi be the portion of Xi contributed by all other flows. Hence, Xi D Yi C Zi.

Let s be the true flow size of f during the measurement period. Assume there is
a large number of flows, n is large, the size of each flow is negligibly small when
comparing with n, r is much larger than 1, and r� m.

24 2 Per-Flow Size Measurement

Flow f has r virtual counters (including VŒu�) in its virtual counter array. Each
packet of f has a probability 1

r to be mapped to VŒu� and increment it by one.
Therefore, Yi follows a binomial distribution:

Yi 	 B.s;
1

r
/: (2.10)

Consider an arbitrary packet belonging to a different flow g. The probability for the
virtual counter array of g to include a particular virtual counter in T is approximately

1 � .m�1
r /

.m
r/
D r

m . When that happens, the conditional probability for this particular

virtual counter to record the packet is approximately 1
r . Combining the above

analysis, the probability for this particular virtual counter to record the packet is
approximately r

m � 1
r D 1

m . Since there are k virtual counters in T , the probability
that T records the packet is .1 � 1

m /k � k
m for k � m. There are n � s packets

outside of f . Since there are numerous flows under measurement, the total number n
of packets can be much larger than the size s of any single flow, even for large flows,
as we observe in our traffic traces. With s� n and n � s � n, Zi roughly follows a
binomial distribution

Zi 	 B.n;
k

m
/: (2.11)

Given the distributions of Yi and Zi, we know E.Yi/ D s
r , and E.Zi/ D nk

m .
Therefore,

E.Xi/ D E.Yi C Zi/ D E.Yi/C E.Zi/ D s

r
C nk

m
:

Hence, we have

s D rE.Xi/ � nkr

m
: (2.12)

We do not know the exact value of E.Xi/, but we have the r instance values, also
denoted as Xi, 0 � i < r, that can be directly counted from the Counter Tree as

subtree counters. Replacing E.Xi/ with the measured average
Pr�1

iD0 Xi

r , we obtain an
estimate of s, denoted as Os, as follows:

Os D
r�1X
iD0

Xi � nkr

m
; (2.13)

where the first term is the number of all packets recorded by the r subtree counters
and the second term captures the average noise presented in r counters.

2.5 Counter Tree-Based Estimation 25

2.5.2 Analysis of Os

Since Yi and Zi follow binomial distributions, we have

Var.Yi/ D s

r
.1 � 1

r
/; Var.Zi/ D nk

m
.1 � k

m
/: (2.14)

In addition, Yi and Zi are independent with each other. Hence, Cov.Yi; Zi/ D 0.
Hence, we have

Var.Xi/ D Var.Yi/C Var.Zi/C 2Cov.Yi; Zi/

D s

r
.1 � 1

r
/C nk

m
.1 � k

m
/:

(2.15)

Therefore,

E.Os/ D E.

r�1X
iD0

Xi/ � ndr

m
D r.

nkr

m
/ � nkr

m
D s; (2.16)

which means the estimator Os is unbiased. In addition, we have

Var.Os/ D Var.
r�1X
iD0

Xi/ D r2Var.Xi/

D s.r � 1/C nkr2

m
.1 � k

m
/

D s.r � 1/C nr2b.dh � 1/

M
.1 � b.dh � 1/

M
/;

(2.17)

where we have used m D dh�1M
b.dh�1/

and k D dh�1. Hence, the standard error of the

ratio Os
s is

StdErr.
Os
s
/ D

q
s.r � 1/C nr2b.dh�1/

M .1 � b.dh�1/

M /

s
:

(2.18)

When n is sufficiently large, the binomial distribution, Zi 	 B.n; k
m /, can

be approximated by a normal distribution, N. nk
m ; nk

m .1 � k
m //. Similarly, Yi

approx	
N. s

r ; s
r .1 � 1

r //. Since the linear combination of independent normal distributions

also follows normal distribution, Xi
approx	 N.�; �2/, where � D nk

m C s
r , and

�2 D nk
m .1 � k

m /C s
r .1 � 1

r /. According to (2.13), we have

Os approx	 N.s; s.r � 1/C nkr2

m
.1 � k

m
//: (2.19)

26 2 Per-Flow Size Measurement

Therefore, the ˛ confidence interval for s is

Os˙ Z˛

s
s.r � 1/C nkr2

m
.1 � k

m
/; (2.20)

where Z˛ is the 1C˛
2

percentile for the standard normal distribution. For example,
when ˛ D 95 %, Z˛ D 1:96.

2.6 Counter Tree-Based Maximum Likelihood Estimation

In this section, we provide and analyze another estimator for flow sizes called
Counter Tree-based Maximum likelihood Estimation (CTM).

2.6.1 CTM Method

From (2.11), the probability of Zi D zi is

ProbfZi D zig D

n

zi

!
.

k

m
/zi.1 � k

m
/n�zi :

The value of n is known from the Counter Tree. The values of m and k are
determined by prescribed system parameters M, b and d, h. Hence, PfZi D zig
can be written as a function of zi, denoted as p.zi/. Therefore, the probability for
observing Xi D xi can be calculated by

ProbfXi D xg/ D ProbfYi C Zi D xig

D
xiX

ziD0

p.zi/ProbfYi D xi � zg/

D
xiX

ziD0

p.zi/

s

yi

!
.
1

r
/yi.1 � 1

r
/s�yi

D
xiX

ziD0

p.zi/q.s; yi/;

(2.21)

2.6 Counter Tree-Based Maximum Likelihood Estimation 27

where yi D xi � zi, q.s; yi/ D
� s

yi

�
. 1

r /yi.1 � 1
r /s�yi , and we have used Yi 	 B.s; 1

r /.
Hence, the likelihood function for observing X0 D x0, X1 D x1, . . . , Xr�1 D xr�1 is

L.sI x0; x1; : : : ; xr�1/ D
r�1Y
iD0

xiX
ziD0

p.zi/q.s; yi/: (2.22)

Taking the logarithm for both sides of the likelihood function, we obtain the log-
likelihood as follows:

ln L D
r�1X
iD0

ln.

xiX
ziD0

p.zi/q.s; yi//:

Using the logarithmic differentiation,1 we can calculate

d
� s

yi

�
ds
D

s

yi

!
yi�1X
jD0

1

s � j
:

Hence,

dq.s; yi/

ds
D

s

yi

!
.
1

r
/yi.1 � 1

r
/s�yi.

yi�1X
jD0

1

s � j
C ln.1 � 1

r
//

D q.s; yi/.

yi�1X
jD0

1

s � j
C ln.1 � 1

r
//:

Finally, we obtain

d ln L

ds
D

r�1X
iD0

Pxi
ziD0 p.zi/q.s; yi/.

Pyi�1
jD0

1
s�j C ln.1 � 1

r //Pxi
ziD0 p.zi/q.s; yi/

: (2.23)

The value of s that satisfies d ln L
ds D 0 will maximize ln L and thereby the likelihood

function L. In addition, we observe that d ln L
ds is monotonically decreasing with

respect to s. Therefore, the bisection search method can be used to find the s value
such that d ln L

ds D 0. As a result, we obtain an estimator for s as follows:

Os D arg max
s
fln Lg D fsjd ln L

ds
D 0g: (2.24)

1Since Œln.f /�0 D f 0

f , we know f 0 D f Œln.f /�0.

28 2 Per-Flow Size Measurement

2.6.2 Analysis of Os

Following the analysis in Sect. 2.5.2, Xi
approx	 N.�; �2/. Hence, the probability

density function of Xi is f .xi/ D 1p
2��

e� .xi��/2

2�2 . Therefore, the likelihood function
for observing X0 D x0, X1 D x1, . . . , Xr�1 D xr�1 can also be written as

L.sI x0; x1; : : : ; xr�1/ D
rY

iD0

1p
2��

e� .xi��/2

2�2 :

Taking the logarithm of the likelihood function, we have

ln L D
r�1X
iD0

ln.
1p
2��

e� .xi��/2

2�2 /;

D
r�1X
iD0

� ln
p

2� � ln � � .xi � �/2

2�2
:

The first and second order derivatives of ln L with respect to s are

d ln L

ds
D

r�1X
iD0

� r � 1

2r2�2
C xi � �

r�2
C .xi � �/2.r � 1/

2r2.�2/2
;

d2 ln L

ds2
D

r�1X
iD0

.
.r � 1/2

2r4.�2/2
� 1

r2�2
� 2.r � 1/.xi � �/

r3.�2/2

� .r � 1/2.xi � �/2

r4.�2/3
/;

where we have used d�

ds D 1
r and d�2

ds D r�1
r2 . Hence,

E.
d2 ln L

ds2
/ D r.

.r � 1/2

2r4.�2/2
� 1

r2�2
� .r � 1/2�2

r4.�2/3
/

D �2r�2 C .r � 1/2

2r3�4
;

since E.xi � �/ D 0 and E.xi � �/2 D �2. Hence, the fisher information [9]

is I.sjx0; x2; : : : ; xr�1/ D �E. d2 ln L
ds2 / D 2r�2C.r�1/2

2r3�4 . According to the asymptotic
properties of maximum likelihood estimators [9], we have

Os d! N.s;
1

I.sjx0; x2; : : : ; xr�1/
/ D N.s;

2r3�4

2r�2 C .r � 1/2
/ (2.25)

2.7 Enhanced Counter Tree Architecture 29

Therefore, the standard relative error is

StdErr.
Os
s
/ D

q
2r3�4

2r�2C.r�1/2

s
; (2.26)

and the ˛ confidence interval for s is

Os˙ Z˛

s
2r3�4

2r�2 C .r � 1/2
: (2.27)

2.7 Enhanced Counter Tree Architecture

2.7.1 Motivation

Recall that the design of vertical counter sharing in the Counter Tree reserves
counters at higher layers for large flows. However, the question that which flows
have actually used the high-layer counters is left open since each high-layer counter
can be shared by multiple virtual counters. If two flows share a high-layer counter
and only one of them uses the counter for recording its packets, there is no way
to figure out which of the two actually uses that counter from the values in the
Counter Tree, which leads to ambiguity. Consider a simple example in which f is
a small flow with size 1 and g is large flow with size 30,000. As shown in Fig. 2.4,
we assume the packet of f is recorded in VŒ1� (more specifically CŒ1� since other
counters in VŒ1� are not used), and 10,000 of g’s packets are recorded in VŒ3�. As a
result, CŒ12� is used by g to accommodate such a large number of packets. We know
that VŒ1� and VŒ3� share the component counter CŒ12�. Although CŒ12� has never
been used by f , it is also included as a component in f ’s virtual counter VŒ1�. As a
result, a great noise is introduced by g when we estimate the size of f since CŒ12� is
included in the estimation of f . To handle this problem, our previous design relies on
mapping each flow to many virtual counters (which helps amortizing the noise) and
using statistical means to remove the noise. However, we suspect that large noise
introduced at higher layers can nevertheless degrade the estimation accuracy. In this
section, we introduce additional mechanism to address this issue.

We define the length of each virtual counter as the number of component counters
it truly uses. In the previous example, the length VŒ1� is 1 since only CŒ1� is used,
while the length of VŒ3� is 3 since CŒ3�, CŒ9�, and CŒ12� have been used. We observe
that the aforementioned ambiguity results from the uncertainly of the length of each
virtual counter after recording. In the previous design of Counter Tree, we simply
assume every virtual counter has the same length, which is equal to the height
h of the tree. The experiment results in Sect. 2.8 will demonstrate that Counter
Tree works well when the tree height h is set small, e.g., h D 2. However, the
performance of Counter Tree seriously deteriorates when the tree height grows
for the purpose of extending estimation range. Theoretically, this observation is

30 2 Per-Flow Size Measurement

embodied by the fact that the variance of Os increases exponentially with h according
to (2.17). To accommodate large flows, reasonably large h should be used, leading to
large estimation error. Therefore, we must figure out how to resolve the ambiguity.

2.7.2 Counters with Status Bits

To address this issue, we design an Enhanced Counter Tree (ECT) architecture
which determines the length of each virtual counter and thereby resolves the
ambiguity by adding a status bit to each counter. For each b-bit counter, its lower
.b � 1/ bits are used for counting packets, and its most significant bit is used as
the status bit. See Fig. 2.7 for illustration. Only if the counter overflows, will the
status bit of that counter be set. With the status bits, we can calculate the true length
for each individual virtual counter, thereby reducing the noise caused by vertical
counter sharing among virtual counters. More specifically, to build a virtual counter
according to its length, we traverse along the path from its layer-0 counter to the
root, and include all counters until the first counter (included) whose status bits
have not been set. Following the aforementioned example, Fig. 2.8 shows that the
introduction of status bits can alleviate the ambiguity in sharing at higher layers. In
the figure, CŒ1� is a component counter of VŒ1� that f is mapped to. Since CŒ1� does
not overflow (i.e., its status bit is not set), the length of VŒ1� must be 1 and therefore

Fig. 2.7 A b-bit counter
consists of .b � 1/ counting
bits and a status bit

Fig. 2.8 After introducing status bits, we can calculate the lengths of virtual counters based on the
status bits in their component counters. The length of VŒ1� that f is mapped to is 1 since the status
bit of CŒ1� is not set, and the length of VŒ3� that g is mapped to is 3 since the status bits of CŒ3� and
CŒ9� are set while the status bit of CŒ12� is not set

2.7 Enhanced Counter Tree Architecture 31

the component counter CŒ12� should has been included. In contrast, the length of
VŒ3� (which g is mapped to) is 3 since the status bits of both CŒ3� and CŒ9� are set
while the status bit of CŒ12� is not. In conclusion, the extra status bits can provide
better resolution for virtual counters and help resolving ambiguity about whether a
high-layer component counter should be included in a virtual counter or not.

If a counter overflows due to a large flow, the small flows that share the counter
will observe a large counter value. However, each flow is assigned to r counters at
the bottom layer, where r is large, e.g., in hundreds. The number of large flows is
much smaller than the number of small/medium flows in real traffic. For a small
flow, if a few of its counters are overflowed due to sharing with large flows, the
values of these counters will be large. But as long as most of the small flow’s
counters have small values, the effect of counter crosstalk will be dampened by the
maximum likelihood estimation (2.24), which discounts the outliers (large counter
values).

For the first estimator (2.13), when there are many, many flows, even without
a large flow, the sheer number of small flows mapped to a counter may cause the
counter to overflow. But this noise can be statistically measured and removed when
r is sufficiently large. Among the r counters, statistically, some will carry larger-
than-average noise and some will carry smaller-than-average noise. When r is large
enough, such difference will be evened out due to the law of large numbers. The
average noise term is captured by the second term in (2.13).

2.7.3 Recording and Estimation

After employing status bits, the process of online packet recording remains the
same except that we need to set its status bit when a counter overflows. For the
offline estimation process, we should slightly modify the estimators given in (2.13)
and (2.24) to reflect the change. Consider the estimation of flow f . Let li be the
length of the virtual counter Vf Œi� after the measurement period, where 0 � i < r.
Instead of using a unified height h for all subtree counters, the height of the
subtree counter corresponding to Vf Œi� should be li, and the value k, meaning the
number of leaf nodes in the subtree, is therefore dli�1. For example, in Fig. 2.8,
the height of the subtree counter corresponding to VŒ1� is 1 and it contains only
one leaf node, while the height of the subtree counter corresponding to VŒ3� is 3
and it contains 23�1 leaf nodes. Everything else remains the same for the offline
estimation. Our experiments in Sect. 2.8 will show that the ECT with status bits
remarkably improves the estimation accuracy of CT.

32 2 Per-Flow Size Measurement

2.8 Experimental Evaluation

2.8.1 Experiment Setup

We have implemented the two estimators based on the Counter Tree, i.e., CTE
and CTM, from Sects. 2.5 and 2.6, respectively. CTE and CTM share the same
module for online packet recording, which performs the operations described in
Sect. 2.4. Hence, when we evaluate the online operations of the Counter Tree, we
use CT as the abbreviation. We have also implemented the Enhanced Counter Tree
architectures. We compare them with the most related counter architectures: (1)
randomized counter sharing (MLM) [10, 11] and (2) Counter Braids (CB) [12, 13].
The bitmap-based MSCBF is less memory efficient than the counter architectures
[10]. Hence, we do not include it for comparison. Without losing generality, we
use TCP flows for presentation, and we have obtained similar results when carrying
out experiments with other types of flows. The network trace we use was captured
by Cisco’s NetFlow at the main gateway of our university, and we are authorized
to store the packets headers in disk for our experiments. The trace contains about
68 million TCP flows and 750 million packets. We implement those counter
architectures in software and evaluate their performance by running experiments on
the trace. Suppose each measurement period contains 10 million packets. We divide
the trace into measurement periods, and perform different estimators in each period.
We use all 750 million packets in our experiments, for 75 periods. We randomly
pick the results from one period to report. In fact, the results from different periods
are quite similar. During the chosen period, there are 1,070,632 TCP flows and
10,053,234 packets, and the minimum, average, and maximum flow size is 1, 9.39,
and 10,972 packets, respectively.

We conduct four sets of experiments. The first set is used for comparing the
estimation accuracy and range of CT, MLM, and CB. We vary the available
memory space M from 0.125, 0.25, 0.5, to 1 MB, which translate to about 1bit/flow,
2bits/flow, 4bits/flow, and 8bits/flow, respectively. For Counter Braids, we use the
same settings as [13]: A two-layer CB and three hash functions at both layers. The
layer-1 counters are 8 bits deep and the layer-2 counters are 56 bits deep. For MLM,
we set the counter length to 6 bits and the size of each storage vector to 100 as
in [10]. For CTE and CTM, we implement a 2-layer tree (which is sufficient for
our experiments) with d D 2 and b D 4 by default. For fair comparison with
MLM, we set the size r of each virtual counter array to 100. The second set of
experiments compare the processing overhead of online packet recording of these
counter architectures. In the third set of experiments, we will vary the values of
d, b, and r to study their respective impact on performance. In the fourth set of
experiments, we compare the performance of Counter Tree and Enhanced Counter
Tree under different tree heights.

2.8 Experimental Evaluation 33

Table 2.2 Comparison of
average processing time for
encoding a packet by CB,
MLM, and CT

Number of
memory accesses

Number of hash
computations

Memory size (MB) CB MLM CT CB MLM CT

0.25 6.01 2 2.09 3.01 1 1

0.5 6.01 2 2.06 3.00 1 1

1 6.01 2 2.03 3.00 1 1

2 6.01 2 2.02 3.00 1 1

2.8.2 Processing Time for Recording a Packet

The processing time for encoding a packet mainly results from memory accesses
to read and write counters and the computations of hash values. A typical imple-
mentation of Counter Braids requires 3 hash functions on each layer, mapping each
flow to the corresponding counters. To encode a packet, the router needs to read
the 3 associated counters on the first layer, increment them by 1, and then write
them back to the memory. If any of the 3 counters overflows, the router has to read
and write another 3 counters on the second layer, which requires another 3 hash
computations. Hence, the lower bounds of the number of memory accesses and the
number of hash computations by CB are 6 and 3, respectively. In contrast, MLM
aligns all counters on the same layer, and each packet is hashed to only one counter,
which requires 2 memory access and 1 hash computation. CT also only requires
1 hash computation to determine the virtual counter for a packet. Recall that (2.9)
gives an upper bound of amortized number of memory accesses by CT. When b D 4,
the amortized number of memory accesses is bounded by 2C 1

24�1
� 2:13. In the

first set of experiments, we record the average number of memory accesses and
average number of hash computations for encoding a packet by CB, MLM, and CT.
The results are shown in Table 2.2. We can see that CT is almost as efficient as
MLM, and they achieve approximately 3� efficiency of CB. Moreover, the average
number of memory accesses of CT decreases when more memory (counters) are
available since each counter is shared by fewer flows, which reduces the overflows.

2.8.3 Estimation Accuracy and Range

Recall that our main objective is to design a counter architecture that can work
in very tight space where existing counter architectures no long work well. So we
first compare Counter Tree with CB and MLM in terms of estimation accuracy
and range to see how they work under the same available memory. The estimation
results of CB are shown in Fig. 2.9 which includes four plots for different values of
M. Each point in the plots represents an .s; Os/ pair for a particular flow, where the
x coordinate is the true flow size s and the y coordinate is the estimated flow size Os.
The equality line, y D x, is presented for reference: The closer a point is to the

34 2 Per-Flow Size Measurement

0

2

4

6

8

10

12

0 2 4 6 8 10 12

CB (0.125MB)

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s (× 103)s (× 103)

s (× 103) s (× 103)

s
(×

 1
03)

CB (0.25MB)

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

CB (0.5MB)

(c)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ˆ
s

(×
 1

03)
ˆs

(×
 1

03)
ˆ

s
(×

 1
03)

ˆ

CB (1MB)

(d)

Fig. 2.9 (a) Shows estimation results by Counter Braids when M D 0:125 MB. Each point in the
plot represents an .s; Os/ pair for a particular flow, where the x coordinate is the true flow size s and
the y coordinate is the estimated flow size Os. The equality line, y D x, is presented for reference: a
point closer to the equality line is more accurate. (b) Shows estimation results by Counter Braids
when M D 0:25 MB. (c) Shows estimation results by Counter Braids when M D 0:5 MB. (d)
Shows estimation results by Counter Braids when M D 1 MB

equality line, the more accurate the estimate is. We can see that when a very tight
memory M D 0:125 MB is used, CB cannot produce any meaningful results. When
M D 0:5 MB, CB generates positively biased results that are all above the equality
line. When the available memory space increases to 1 MB, the estimation results
of CB do not converge. So we terminate the process after 1000 iterations. We find
that when M
 2 MB, CB can yield very accurate estimates (which is not shown
in the figure). Therefore, CB does not suite for traffic measurement under very tight
memory.

Figure 2.10 presents the estimation results of MLM. MLM does not work when
M D 0:125 MB. Although MLM can yield accurate estimates for small or moderate
flows when more memory is available, it produces very negatively biased results
for large flows. Because large flows may lead to counter overflows, some packets
cannot be recorded when the counters are fully used. Although the increase of M can

2.8 Experimental Evaluation 35

0

2

4

6

8

10

12

0 2 4 6 8 10 12

MLM (0.125MB)

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s (× 103)s (× 103)

s (× 103) s (× 103)

MLM (0.25MB)

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

MLM (0.5MB)

(c)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s
(×

 1
03

)
ˆs

(×
 1

03
)

ˆ
s

(×
 1

03
)

ˆ s
(×

 1
03)

ˆ
MLM (1MB)

(d)

Fig. 2.10 Estimation results by MLM when M D 0.125 MB, 0.25 MB, 0.5 MB, and 1 MB (a)–(d),
respectively

enlarge the estimation range of MLM to some extent, it does not address the problem
fundamentally. For example, the estimation range is about 6000 when M D 1 MB.

The estimation results of CTE and CTM are given in Figs. 2.11 and 2.12,
respectively. As expected, the employment of the Counter Tree architecture signif-
icantly extends the counting range than MTM. Both CTE and CTM can yield very
accurate estimates for all flows, including flows with very large sizes, even under
a tight memory. The estimates become more accurate when more memory space is

available. The relative estimation bias Bias. Os
s / and the relative standard error

p
Var.Os/
s

of CTE and CTM are presented in Fig. 2.13. We find that CTE and CTM in fact have
comparable estimation accuracy. Figure 2.13 shows that the relative errors for large

flows are small. Generally, Bias. Os
s / and

p
Var.Os/
s decrease with the increase of s.

Although the relative errors for small flows can be large, the results in Figs. 2.11
and 2.12 demonstrate that no small flows will deviate significantly from the equality
line for large absolute errors (which would cause mis-classification). It is expected
and true that the relative errors for small flows are large for virtually all estimation
methods. We use an extreme example to bring out the idea: There is a difference in
interpreting the results for small flows and those for large flows. Consider a small

36 2 Per-Flow Size Measurement

0

2

4

6

8

10

12

0 2 4 6 8 10 12

CTE (0.125MB)

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s (× 103)s (× 103)

s (× 103) s (× 103)

CTE (0.25MB)

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

CTE (0.5MB)

(c)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s
(×

 1
03)

ˆs
(×

 1
03)

ˆ
s

(×
 1

03)
ˆ s

(×
 1

03)
ˆ

CTE (1MB)

(d)

Fig. 2.11 Estimation results by CTE when M D 0.125 MB, 0.25 MB, 0.5 MB, and 1 MB (a)–(d),
respectively

flow of size 1. If the estimation is 2 (which is in fact a good result because it is
off by just 1), the relative error is 100 %. For a large flow of 10,000, if the relative
error is 100 %, it will be 20,000, a truly bad estimation. For the same large flow, if
the estimation is off by 10, it is a great estimation because the relative error is just
0.1 %. However, if the previous small flow is off by 10, the relative error is 1000 %—
even with such a relative error, we would not necessarily say this is a bad estimation
because a flow of 11 packets will not be mis-classified as a large flow, in applications
of identifying elephant flows or classifying all flows into a few categories based on
their sizes.

To numerically evaluate how large flows affect the estimation results of small
flows, we only consider small flows that share counters with large flows, and omit
the small flows that do not share any counters with large flows. More specifically,
we consider all flows with sizes smaller than 100 as small, while those with sizes
larger than 1000 as large. However, we observe that all small flows share multiple
counters with large flows. The reason is that each flow uses a large number r of
counters, which means a small flow will have a good chance to share at least one

2.8 Experimental Evaluation 37

0

2

4

6

8

10

12

0 2 4 6 8 10 12

CTM (0.125MB)

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

CTM (0.25MB)

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

CTM (0.5MB)

(c)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s (× 103)s (× 103)

s (× 103) s (× 103)

ŝ
(×

 1
03

)

ŝ
(×

 1
03

)

ŝ
(×

 1
03

)

ŝ
(×

 1
03

)

CTM (1MB)

(d)

Fig. 2.12 Estimation results by CTM when M D 0.125 MB, 0.25 MB, 0.5 MB, and 1 MB (a)–(d),
respectively

counter with one of the large flows. We stress that our method is designed to handle
such sharing through noise removal and maximum likelihood estimation.

In conclusion, CT works much better than CB and MLM under a tight memory,
and it significantly extends the estimation range when compared with MLM.

2.8.4 Impact of b, r, and d

We now vary the system parameters b, r, and d to study their impacts on the
performance of CT, while M is fixed to 0.5 MB. The parameters are set as follows:

1. Impact of b: we fix d D 2, r D 100, h D 2 and vary b from 4, 6, to 8.
2. Impact of r: we fix b D 4, d D 2, h D 2 and vary r from 50, 100, to 200.
3. Impact of d: we fix b D 4, r D 100, h D 2 and vary d from 2, 3, to 4.

38 2 Per-Flow Size Measurement

-0.2
0

0.4

0.8

1.2

1.6

0 1 2 3

re
la

ti
ve

 b
ia

s

CTE (0.125MB)
CTE (0.25MB)
CTE (0.5MB)

CTE (1MB)

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

0 1 2 3

re
la

ti
ve

 s
ta

nd
ar

d
er

ro
r

s (× 103)

s (× 103)s (× 103)

s (× 103)

CTE (0.125MB)
CTE (0.25MB)
CTE (0.5MB)

CTE (1MB)

(b)

-0.2
0

0.4

0.8

1.2

1.6

0 1 2 3

re
la

ti
ve

 b
ia

s

CTM (0.125MB)
CTM (0.25MB)
CTM (0.5MB)

CTM (1MB)

(c)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

0 1 2 3

re
la

ti
ve

 s
ta

nd
ar

d
er

ro
r

CTM (0.125MB)
CTM (0.25MB)
CTM (0.5MB)

CTM (1MB)

(d)

Fig. 2.13 (a) Shows the relative estimation bias Bias. Os
s / of CTE. (b) Shows the relative standard

error StdErr. Os
s / of CTE. (c) Shows the relative estimation bias Bias. Os

s / of CTM. (d) Shows the

relative standard error StdErr. Os
s / of CTM

We find that those parameters affect CTE and CTM in a similar way. Hence,
we only present the estimation results of CTE in Figs. 2.14, 2.15, and 2.16. When
we increase the b, r, or d, the estimation range will be increased accordingly. But
this does not come for free. Since the increase of b, r, or d makes more flows share
each counter, it is expected that the estimation accuracy will degrade due to elevated
noise. However, the experimental results show that such degradation is small, and
the performance of CTE is not very sensitive to the change of b, r, or d (we will
show shortly that the change of h can significantly affect the estimation accuracy
of CTE).

2.8.5 Comparison of CTE and E-CTE

Recall that our analysis in Sect. 2.7 points out that the increase of tree height
h can degrade the performance of CTE and CTM. To demonstrate this, we run

2.8 Experimental Evaluation 39

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s
(×

 1
03)

ˆ

s (× 103)

b=4

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s
(×

 1
03)

ˆ

s (× 103)

s (× 103)

b=6

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s
(×

 1
03)

ˆ

s (× 103)

b=8

(c)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

0 1 2 3

re
la

ti
ve

 s
ta

nd
ar

d
er

ro
r

b=4
b=6
b=8

(d)

Fig. 2.14 Impact of b on the performance of CTE, where M D 0:5 MB, d D 2, and r D 100. (a)
Shows estimation results of CTE when b D 4. (b) Shows estimation results of CTE when b D 6.
(c) Shows estimation results of CTE when b D 8. (d) Shows the comparison of relative standard
error when b = 4, 6, 8

experiments using the CTE method (similar results can be observed if the CTM
method is adopted) with different tree heights. We fix M D 0:5 MB, b D 4, d D 2,
r D 100, and vary h from 2, 4, to 6. The results are presented in Fig. 2.17. As
we expect, the estimation accuracy of CTE becomes much worse with the increase
of h. The fourth plot in Fig. 2.17 demonstrates that a larger h significantly increases
the relative standard error of the estimates. We use E-CTE to stand for the CTE
method under the Enhanced Counter Tree architecture which is designed to address
this issue. For comparison, we conduct the same experiments on E-CTE, and the
results are depicted in Fig. 2.18. Owing to the status bits in E-CTE, the increase
of h only slightly degrades the performance of ECT. Therefore, ECT dramatically
outperforms CTE when a relatively large h is adopted, e.g., h D 6.

40 2 Per-Flow Size Measurement

0

2

4

6

8

10

12

0 2 4 6 8 10 12

r=50

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s
(×

 1
03)

ˆs
(×

 1
03)

ˆ
ŝ

(×
 1

03)

s (× 103)s (× 103)

s (× 103) s (× 103)

r=100

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

r=200

(c)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

0 1 2 3

re
la

ti
ve

 s
ta

nd
ar

d
er

ro
r

r=50
r=100
r=200

(d)

Fig. 2.15 Impact of r on the performance of CTE, where M D 0:5 MB, b D 4, and d D 2.
(a) Shows estimation results of CTE when r D 50. (b) Shows estimation results of CTE when
r D 100. (c) Shows estimation results of CTE when r D 200. (d) Shows the comparison of
relative standard error when r D 50; 100; 200

2.8.6 Scalability of Counter Tree

To evaluate the scalability of Counter Tree, we apply it to a larger trace, which
contains 8,253,368 TCP flows and 100,000,015 packets, and the minimum, average,
and maximum flow size is 1, 12.12, and 295,451 packets, respectively. The available
memory space M remains to be 0.125, 0.25, 0.5, and 1 MB, which translate to
about 0.125bits/flow, 0.25bits/flow, 0.5bits/flow, and 1bits/flow, respectively. We
implement Counter Tree with different system parameters. Figure 2.19 shows the
estimation results of E-CTE with b D 4, d D 2, r D 100, and h D 4. It is clear
that Counter Tree can still yield reasonably accurate estimation results under an
extremely tight memory space, e.g., 0.125 bits/flow.

2.9 Summary 41

0

2

4

6

8

10

12

0 2 4 6 8 10 12

d=2

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s
(×

 1
03

)
ˆs

(×
 1

03
)

ˆ
s

(×
 1

03
)

ˆ
d=3

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

s (× 103) s (× 103)

s (× 103)s (× 103)

d=4

(c)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

0 1 2 3

re
la

ti
ve

 s
ta

nd
ar

d
er

ro
r

d=2
d=3
d=4

(d)

Fig. 2.16 Impact of d on the performance of CTE, where M D 0:5 MB, b D 4, and r D 100.
(a) Shows estimation results of CTE when d D 2. (b) Shows estimation results of CTE when
d D 3. (c) Shows estimation results of CTE when d D 4. (d) Shows the comparison of relative
standard error when d D 2; 3; 4

2.9 Summary

This chapter presents a scalable Counter Tree architecture. We develop a two-
dimensional sharing technique, where each counter can be shared by multiple virtual
counters and each virtual counter can be shared by multiple flows. As a result,
Counter Tree significantly reduces memory requirement and extends estimation
range. To encode a packet, Counter Tree only requires a little more than 2 memory
accesses, which is asymptotically optimal. We use two offline decoding methods to
estimate flow sizes. The extensive experiments with real network trace demonstrate
that our methods can yield very accurate estimates even under an extremely tight
memory space, e.g., 2 bits per flow.

42 2 Per-Flow Size Measurement

0

2

4

6

8

10

12

0 2 4 6 8 10 12

CTE h=2

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ˆ

s (× 103)

s
(×

 1
03)

ŝ
(×

 1
03)

ŝ
(×

 1
03)

s (× 103)

s (× 103) s (× 103)

CTE h=4

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

CTE h=6

(c)

 0
 0.5

 1
 1.5

 2
 2.5

 3

0 1 2 3

re
la

ti
ve

 s
ta

nd
ar

d
er

ro
r

CTE h=2
CTE h=4
CTE h=6

(d)

Fig. 2.17 Performance of CTE with different tree height h, where M D 0:5 MB, b D 4, d D 2,
and r D 100. (a) Shows estimation results of CTE when h D 2. (b) Shows estimation results of
CTE when h D 4. (c) Shows estimation results of CTE when h D 6. (d) Shows the comparison of
relative standard error when h D 2; 4; 6

2.9 Summary 43

0

2

4

6

8

10

12

0 2 4 6 8 10 12

E-CTE h=2

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ˆ

s (× 103)

s
(×

 1
03)

ŝ
(×

 1
03)

s
(×

 1
03)

s (× 103)s (× 103)

s (× 103)

E-CTE h=4

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

ˆ

E-CTE h=6

(c)

 0
 0.5

 1
 1.5

 2
 2.5

 3

0 1 2 3

re
la

ti
ve

 s
ta

nd
ar

d
er

ro
r

E-CTE h=2
E-CTE h=4
E-CTE h=6

(d)

Fig. 2.18 Performance of E-CTE with different tree height h, where M D 0:5 MB, b D 4, d D 2,
and r D 100. (a) Shows estimation results of E-CTE when h D 2. (b) Shows estimation results
of E-CTE when h D 4: (c) Shows estimation results of E-CTE when h D 6. (d) Shows the
comparison of relative standard error when h D 2; 4; 6

44 2 Per-Flow Size Measurement

0

5

10

15

20

25

30

0 5 10 15 20 25 30

E-CTE (0.125MB)

(a)

0

5

10

15

20

25

30

0 5 10 15 20 25 30

E-CTE (0.25MB)

s (× 104)

s
(×

 1
04

)

s (× 104) s (× 104)

s (× 104)

(b)

0

5

10

15

20

25

30

0 5 10 15 20 25 30

E-CTE (0.5MB)

(c)

0

5

10

15

20

25

30

0 5 10 15 20 25 30

E-CTE (1MB)
ˆs
(×

 1
04

)
ˆ

s
(×

 1
04

)
ˆs
(×

 1
04

)
ˆ

(d)

Fig. 2.19 Estimation results of E-CTE for a trace with 100 million packets. We set b D 4, d D 2,
r D 100, h D 4, and M D 0.125 MB, 0.25 MB, 0.5 MB, and 1 MB (a)–(d), respectively

References

1. Chen, M., Chen, S.: Counter tree: a scalable counter architecture for per-flow traffic measure-
ment. In: Proceedings of IEEE ICNP, pp. 111–122 (2015)

2. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the Count-Min sketch
and its applications. In: Proceedings of LATIN (2004)

3. Duffield, N., Lund, C., Thorup, M.: Estimating flow distributions from sampled flow statistics.
In: Proceedings of ACM SIGCOMM (2003)

4. Einziger, G., Friedman, R.: Counting with tinytable: every bit counts! In: Proceedings of IEEE
INFOCOM Workshops, pp. 77–78 (2015)

5. Estan, C., Varghese, G.: New directions in traffic measurement and accounting. In: Proceedings
of ACM SIGCOMM (2002)

6. Kamiyama, N., Mori, T.: Simple and accurate identification of high-rate flows by packet
sampling. In: Proceedings of IEEE INFOCOM (2006)

7. Kumar, A., Sung, M., Xu, J., Wang, J.: Data streaming algorithms for efficient and accurate
estimation of flow size distribution. In: Proceedings of ACM SIGMETRICS (2004)

8. Kumar, A., Xu, J., Wang, J.: Space-code bloom filter for efficient per-flow traffic measurement.
IEEE J. Sel. Areas Commun. 24(12), 2327–2339 (2006)

9. Lehmann, E., Casella, G.: Theory of Point Estimation. Springer, New York (1998)

References 45

10. Li, T., Chen, S., Ling, Y.: Fast and compact per-flow traffic measurement through randomized
counter sharing. In: Proceedings of IEEE INFOCOM, pp. 1799–1807 (2011)

11. Li, T., Chen, S., Ling, Y.: Per-flow traffic measurement through randomized counter sharing.
IEEE/ACM Trans. Netw. 20(5), 1622–1634 (2012)

12. Lu, Y., Prabhakar, B.: Robust counting via Counter Braids: an error-resilient network measure-
ment architecture. In: Proceedings of IEEE INFOCOM (2009)

13. Lu, Y., Montanari, A., Prabhakar, B., Dharmapurikar, S., Kabbani, A.: Counter Braids: a novel
counter architecture for per-flow measurement. In: Proceedings of ACM SIGMETRICS (2008)

14. Mikians, J., Dhamdhere, A., Dovrolis, C., Barlet-Ros, P., Solé-Pareta, J.: Towards a statistical
characterization of the interdomain traffic matrix, pp. In: Networking 2012, pp. 111–123.
Springer, Berlin (2012)

15. Ramabhadran, S., Varghese, G.: Efficient implementation of a statistics counter architecture.
In: ACM SIGMETRICS Performance Evaluation Review, vol. 31, pp. 261–271 (2003)

16. Shah, D., Iyer, S., Prabhakar, B., McKeown, N.: Analysis of a statistics counter architecture.
In: Hot Interconnects 9, 2001, pp. 107–111. IEEE, New York (2001)

17. Zhao, Q., Xu, J., Liu, Z.: Design of a novel statistics counter architecture with optimal space
and time efficiency. In: ACM SIGMETRICS Performance Evaluation Review, vol. 34(1),
pp. 323–334 (2006)

Chapter 3
Per-Flow Cardinality Measurement

Per-flow cardinality measurement over big network data consisting of numerous
flows is a fundamental problem with many practical applications. Traditionally
the research on this problem focused on using a small amount of memory to
estimate each flow’s cardinality from a large range (up to 109). However, although
the memory needed for each flow has been greatly compressed, when there is an
extremely large number of flows, the overall memory demand can still be very high,
exceeding the availability under some important scenarios, such as implementing
online measurement modules in network processors using only on-chip cache
memory. In this chapter, instead of allocating a separated data structure (called
estimator) for each flow, we take a different path by viewing all the flows together as
a whole: Each flow is allocated with a virtual estimator, and these virtual estimators
share a common memory space. We show that sharing at the register (multi-bit)
level is superior than sharing at the bit level. We present a framework of virtual
estimators that allows us to apply the idea of sharing to an array of cardinality
estimation solutions, achieving far better memory efficiency than the best existing
work. Experimental results show that the new solution can work in a tight memory
space of less than 1 bit per flow or even one tenth of a bit per flow—a quest that has
never been realized before.

3.1 Problem Statement

Per-flow cardinality estimation is one of the fundamental problems in network traffic
measurement [6, 7, 10, 12, 20, 21]. In a general definition, it is to estimate the number
of distinct elements in each flow during a measurement period. The flows under
measurement may be per-source flows, per-destination flows, per-source/destination
flows, TCP flows, WWW flows, P2P flows, or any user-defined flows. The elements

© Springer International Publishing AG 2017
S. Chen et al., Traffic Measurement for Big Network Data, Wireless Networks,
DOI 10.1007/978-3-319-47340-6_3

47

48 3 Per-Flow Cardinality Measurement

may be destination addresses, source addresses, ports, values in other header fields,
or even keywords that appear in the payload of packets in the flow.

We emphasize that per-flow cardinality estimation is different from the problem
of per-flow size measurement given in Chap. 2. Consider all packets with a ceratin
source address as a flow. Suppose the source sends 10,000 packets to a single
destination address. The flow size is 10,000 when we measure the number of
packets, but the flow cardinality is just one if we measure the distinct number of
destination addresses in this flow. In short, cardinality estimation needs to remove
duplicates, which makes it a more difficult problem because it has to somehow
“remember” the observed elements for duplicate removal, while measuring a flow
size only needs a counter.

3.2 Prior Art

3.2.1 Hash Table and Bitmap

It is too costly to design an estimator based on a hash table that stores all elements
to remove duplicates. Instead, we may use a bitmap [17]: Initially all bits are zeros.
Each arrival element is hashed to a bit which is then set to one. Duplicates are
automatically filtered out since they are mapped to the same bit. At the end of a
measurement period, the cardinality estimation is On D �b ln V [17], where b is the
number of bits used, V is the fraction of bits whose values remain zeros, and On is the
estimated flow cardinality.

The problem of bitmap is that the estimation range is bounded by b ln b. Hence,
the bitmap has to be huge to handle a very large flow. Figure 3.1 shows the
simulation results, where the bitmap size is 1280 bits per flow in Fig. 3.1a, 96 bits
per flow in Fig. 3.1b, and 32 bits per flow in Fig. 3.1c, respectively. Each flow is
represented by a point, whose x-coordinate is the true cardinality and y-coordinate
is the estimated cardinality. The equality line is also shown. The closer a point
is to the line, the more accurate the estimation is. Figure 3.1a clearly shows a
limited estimation range. As the bitmap size shrinks, the range shrinks quickly, as
shown in Fig. 3.1b–d. Note that “less than 1 bit” per flow will not work for the
bitmap approach. Variants of the bitmap approach also have the problem of limited
estimation range [18–21].

3.2.2 MultiResolutionBitmap and PCSA

Sampling is one of the main methods in the literature for dealing with the estimation
range problem. MultiResolutionBitmap [7] is essentially the concatenation of
multiple bitmaps, each having a different sampling probability. If we let the

3.2 Prior Art 49

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

Bitmap

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

Bitmap

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

Bitmap
10

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

(b)(a)

(d)(c)

Fig. 3.1 Measurement results of the bitmap approach, whose estimation range is limited. Each
flow is represented by one point. The x-coordinate is the true cardinality, and the y-coordinate is
the estimated cardinality. The closer a point is to the equality line, the more accurate the estimation
is. (a) 1280 bits per flow. (b) 96 bits per flow. (c) 32 bits per flow. (d) less than 1 bit per flow

sampling probabilities be 1
2
, . 1

2
/2, . . . , . 1

2
/w and set each bitmap to its minimum

size (a single bit), then we have the smallest MultiResolutionBitmap, equivalent to
an FM sketch of the earlier PCSA [8]. An FM sketch, also referred to as a register
in the literature, can give an estimation up to 2w, where w is the number of bits in
the register. For example, w D 32 for an estimation range up to 232.

However, the estimation result from a single register is very inaccurate. To
improve accuracy, FM uses multiple registers and returns the average of their
estimations. Figure 3.2 presents the simulation results of FM. It clearly has a larger
estimation range, but its estimation accuracy is low even when there are 40 registers
in Fig. 3.2a. The estimation results are discrete when there are just a few registers in
Fig. 3.2b, c.

50 3 Per-Flow Cardinality Measurement

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

PCSA

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

PCSA

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

PCSA
10

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

(b)(a)

(c) (d)

Fig. 3.2 Measurement results of FM or PCSA. (a) 1280 bits per flow, 40 registers of 32 bits each,
13 % error. (b) 96 bits per flow, 3 registers of 32 bits each. (c) 32 bits per flow, 1 register of 32 bits.
(d) less than 1 bit per flow

3.2.3 LogLog and HyperLogLog

LogLog [5] and HyperLogLog [9] were designed to compress the size of each
register from 32 bits to 5 bits for the same estimation range of 232. Their
performance is presented in Figs. 3.3 and 3.4. The estimation accuracy of LogLog
and HyperLogLog (HLL) is much improved as compared with PCSA, because
smaller registers mean there are more of them under the same memory constraint,
which drives the estimation variance down. However, they do not work well for 80
bits in Figs. 3.3b and 3.4b (with the relative standard error being 33 % for LogLog
and 26 % for HLL), let alone less than one bit per flow. The accuracy of HLL is a
little better than that of LogLog.

3.2 Prior Art 51

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

LogLog

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

LogLog

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

LogLog
10

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

(a) (b)

(c) (d)

Fig. 3.3 Measurement results of LogLog. (a) 1280 bits per flow, 256 registers of 5 bits each, 8.1 %
error. (b) 80 bits per flow, 16 registers of 5 bits each, 33 % error. (c) 5 bits per flow, 1 register of
5 bits. (d) less than 1 bit per flow

3.2.4 Performance Summary

The performance of the traditional cardinality estimators is summarized in Table 3.1,
where MinCount [1, 2] takes a different approach by hashing each arrival element
and keeping a number of smallest hash values, from which the estimation is made
(using the range of the smallest hash values). In the second column, m is the number
of smallest hash values kept by MinCount for each flow, the number of bits used by
MultiResolutionBitmap, or the number of registers used by other approaches. The
total memory cost is m multiplied by the size of each memory unit (hash value, bit,
or register).

For a single flow, the memory needed to control the standard error within 5 %
of the actual cardinality is given in the last column, which shows the progress in
memory saving over the past decades: If we use PCSA as the initial benchmark,

52 3 Per-Flow Cardinality Measurement

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

HyperLogLog

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

HyperLogLog

1

5

10

15

20

1 5 10 15 20

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

HyperLogLog
10

1
1

2
3
4
5
6
7
8
9

2 3 4 5 6 7 8 9 10

es
ti
m

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

(a) (b)

(c) (d)

Fig. 3.4 Measurement results of HyperLogLog. (a) 1280 bits per flow, 256 registers of 5 bits each,
6.5 % error. (b) 80 bits per flow, 16 registers of 5 bits each, 26 % error. (c) 5 bits per flow, 1 register
of 5 bits. (d) less than 1 bit per flow

Table 3.1 Comparison of the prior art

Solution Std. Err. (�) Mem units Mem (�D5 %)

MinCount 1:00=
p

m �32 bits 1600 bytes a

MultiResBitmap � 4:4=
p

m 1 bit 968 bytes

PCSA 0:78=
p

m 32-bit registers 974 bytes

LogLog 1:30=
p

m 5-bit registers 423 bytes

HyperLogLog 1:04=
p

m 5-bit registers 271 bytes
a For MinCount, we assume the size of its memory units is 32 bits, and
each unit stores the 32-bit hash value of a stream element

the seminal work of LogLog cuts the memory requirement by more than half. The
follow-up HyperLogLog cuts the memory further by more than 30 %. HyperLogLog
has made great impact on IT industry and was adopted by Google [10], PostgreSQL,
file-sharing P2P systems [15], and DDoS attack detection systems [9].

3.3 Register Sharing and Virtual Estimators 53

3.3 Register Sharing and Virtual Estimators

3.3.1 Motivation

The traditional solutions allocate one estimator for each flow, which is, however, a
serious waste of space. As an example, we download traffic traces from CAIDA
(Cooperative Association for Internet Data Analysis) [16]. Consider per-source
flows. The cardinality of each flow is the number of distinct destination addresses
contacted by a source. We illustrate the distribution of the flow cardinalities
in Fig. 3.5, where the measurement period is 10 min and each point shows the
number (y-coordinate) of flows that have a certain cardinality (x-coordinate).
A roughly straight line on a log–log plot is often considered as the signature of
a power law distribution. In this figure, the line is roughly y D 3 � 104 � x�1:7. This
log-scale figure demonstrates that the vast majority of flows have small cardinalities,
while a small number of flows have large cardinalities.

Without knowing the flows’ cardinalities beforehand (which are in fact what we
want to figure out), the estimators of all flows are set according to the maximum
range of cardinality, requiring hundreds of bits even for the best estimator. However,
if a flow turns out to be small, e.g., with a cardinality of 1, most of the bits will be
wasted.

3.3.2 Sharing at Bit Level?

One way to make use of unused bits is to share bits among the estimators. Two
solutions were designed for sharing among bitmaps [20] and FM sketches [12]. In
the compact spread estimator (CSE) [20], a bitmap is allocated for each flow, but all
bitmaps share their bits from a common bit pool. The problem is that it is difficult to
extend the estimation range of bitmaps without incurring large overhead or causing
estimation inaccuracy.

Fig. 3.5 Flow distribution:
each point shows the number
(y-coordinate) of flows
having a certain cardinality
(x-coordinate). The average
cardinality of all flows is
about two

0

1

10

102
103
104
105
106
107

0 1 10 102 103 104 105

N
um

be
r

of
 F

lo
w

s

Flow Cardinality

54 3 Per-Flow Cardinality Measurement

Fig. 3.6 Bit sharing in [12],
where the FM sketches
(registers) share their
individual bits from a
common bit pool

Fig. 3.7 Register sharing,
where the estimators share
their registers from a
common register pool

In the probabilistic multiplicity counting solution (PMC) [12], an estimator with
multiple FM sketches is allocated to each flow. In fact, PMC was originally designed
for estimating the flow size (i.e., the number of packets in each flow), but it can
be easily modified for estimating the flow cardinality, which is not commonly true
for other flow size estimators. As illustrated in Fig. 3.6, the FM sketches (called
registers) of all estimators share their bits from a common bit pool uniformly at
random, so that mostly unused higher-order bits in the registers can be utilized.
However, sharing introduces noise across estimators, which we explain through an
example: Without going into too much technical details which can be found in [12],
roughly speaking, when the ith bit in a register (FM sketch) is set to one, it means
2i packets are recorded by the register on average, where 0 � i < w and w is the
number of bits in each register. In Fig. 3.6, suppose estimator 1 is for a small flow. So
the high-order bits in its sketches should be zeros. If a high-order bit in estimator 1
happens to share the same bit in the common pool with a low-order bit in estimator 2,
when the low-order bit is set to one by estimator 2, the high-order bit in estimator 1
will also become one. The low-order bit in estimator 2 only represents one element,
but the noise it induces represents 2w�1 elements for estimator 1. Although novel
statistical methods can be used to remove noise, the noise of bit-level sharing is too
high to take the full potential of the sharing idea, which we will demonstrate through
experiments. Sharing high-order bits only with high-order bits will not work well
either because the underutilized high-order bits will remain underutilized.

3.3.3 Register Sharing and Virtual Estimators

Our idea is to share at the register level, as illustrated in Fig. 3.7. The estimators
of different flows share their registers from a common register array M. Given a
fixed register array, we dynamically create an estimator for a new flow by randomly

3.3 Register Sharing and Virtual Estimators 55

drawing a number of registers from the array. In a sense, the array of registers are
physical, but the estimators are logical because they are created on the fly without
additional memory allocation. Hence, they are called virtual estimators.

Suppose a system allocates a certain amount of physical memory to the function
of cardinality estimation. The number of bits available may be smaller than the
number of flows. If this is the case, the number of registers in M will certainly be
even smaller. Each register is thus shared by many virtual estimators, ensuring that
the register is fully utilized.

Consider the virtual estimator of an arbitrary flow. What it estimates is actually
the cardinality of the flow plus the noise introduced by other flows that share its
registers. Refer to Fig. 3.7 where estimator 1 and estimator 2 share a common
register. If the register records 5 elements from the flow of estimator 1 and 6
elements from the flow of estimator 2, the final result will be 11 elements recorded.
From the viewpoint of estimator 1, the register carries its flow’s information as well
as noise from other flows. The same is true from the viewpoint of estimator 2.

Because the registers in all virtual estimators are randomly picked, there is an
equal opportunity for any two registers from different estimators to be mapped to
the same physical register in M. Hence, as one virtual estimator records an element
of its flow into one of its registers, the probability for this operation to cause noise
to any other virtual estimator is the same. When there are a large number of virtual
estimators and each of them randomly chooses a large number of registers, the noise
that they cause to each other will be roughly uniform. Such uniform noise can be
measured and removed.

One may argue that similar noise also exists for register-level sharing. An
estimator of a small flow may share a register with an estimator of a large flow. First,
the elements of the large flow will be spread among its hundreds of registers. Each
register carries much smaller noise than a single bit in PMC can do. Second, the
number of large flows is often exponentially fewer than the number of small flows;
see, Fig. 3.5, for example. That means the number of registers that carry large noise
accounts for a small fraction of all registers in M. If the estimator of a small flow
contains one or a few registers of large noise, the technique of harmonic averaging
can be used to remove the effect of such outliers (which is already done by [5, 9]).
On the contrary, for PMC, all bits that are set to ones in V can cause large noise.

3.3.4 Counter Sharing for Flow Size—A Different Problem

We have explained in the previous section that flow-size estimation is a different
problem than cardinality estimation. Sharing counters has been applied to reduce
memory overhead for estimating the sizes of a large number of flows [3, 11, 13].
Take CountMin [3] as example, which resembles a segmented counting Bloom
filter (organized in a two-dimensional matrix), where the arrival of each packet
of a flow causes the k counters of the flow to increase by one. The minimal
value of the k counters is used as an estimation of the flow size. This approach

56 3 Per-Flow Cardinality Measurement

cannot solve the problem of cardinality estimation because the counter does not
“remember” the elements that it has seen for duplicate removal. As a minor note,
although the minimal value of the k counters has the least noise, it does have noise,
which can be significant when the number of bits is smaller than the number of
flows—because each counter has multiple bits, the number of counters will be far
smaller than the number of flows. Therefore it is highly probable that most counters
are shared by multiple flows, and thus even the minimal value of the k counters
carries the combined size of multiple flows.

3.4 A Framework for Virtual-Estimator Solutions

We now present a unified framework for developing virtual-estimator solutions that
enable register-level sharing for mainstream sketches such as PCSA [8], LogLog [5],
and HyperLogLog [9]. In the next section, we will show as an example how to
apply the framework to HLL for a virtual-estimator solution denoted as vHLL. The
notations used are summarized in Table 3.2 for quick reference.

In the framework, we use a single array M of m registers to store the cardinality
information of all flows. The ith register in the array is denoted by MŒi�, 0� i < m.
The size of the registers is set based on the type of estimators used [5, 8, 9] and the
maximum range of cardinality to be estimated. For example, in the vHLL solution,
the size of registers is five bits, in order to measure big cardinalities up to 4 � 109.
Each flow has s virtual registers that are randomly selected from M through hash
functions. These registers logically form a virtual estimator, denoted as Mf , where
f is the label of the flow. The ith register of the virtual estimator, denoted as Mf Œi�,
0 � i < s, is selected from M as follows:

Mf Œi� D MŒHi.f /�; (3.1)

Table 3.2 Notations

M A physical array of registers

m Number of registers in M

Mf A subset of registers from M used by the virtual estimator
of flow f

s Number of registers used by a virtual estimator

Hi.f / A hash function that maps the ith register of Mf to a
physical register in M

nf True cardinality of flow f

Onf Estimated cardinality of flow f

Ons An estimation made based on Mf , which record both
elements of flow f and elements from other flows as noise

n True combined cardinality of all flows

On An estimated value of n

3.4 A Framework for Virtual-Estimator Solutions 57

where Hi.: : :/ is a hash function whose range is Œ0; m/. We want to stress that Mf is
not a separate data structure. It is merely a logical construction based on registers
selected from M, and it is not explicitly constructed during online operation. In all
our later formulas, one should treat the notation Mf Œi� simply as MŒHi.f /�, referring
to a register in M.

The hash function Hi, 0� i < s, can be implemented from a master function
H.: : :/ as follows:

Hi.f / D H.f ˚RŒi�/ or

Hi.f / D H.f j i/; (3.2)

where “j” is the concatenation operator, “˚” is the XOR operator, and RŒi� is a
constant whose bits differ randomly for different indexes i. The master hash function
H we have adopted in our experiments is 64-bit MURMUR3 hash. According to
an online technical document, MURMUR3 performs better than many other hash
functions, including JENKINS’ LOOKUP3, CITY, and SPOOKY [14].

At the beginning of each measurement period, all registers are reset to zeros.
The arrival stream of elements is abstracted as a sequence of hf ; ei pairs, where f
is a flow label and e is an element of the flow. For example, if a router measures
per-source flows for their numbers of distinct destination addresses, it extracts the
source address of each arrival packet as the flow label and the destination address
from the IP header as the element to be recorded. For each pair hf ; ei, we record e in
one of the registers of Mf based on the methods in [5, 8] or [9], depending on which
one is used.

At the end of a measurement period, the register array M is offloaded by a server
for long-term storage. Given a flow label f in offline query, we reconstruct its virtual
estimator Mf by copying s registers from M at indices Hi.f /, 0� i < s. Let ns be
the number of distinct elements recorded by Mf , which is the flow’s cardinality plus
the noise introduced by other flows due to register sharing. Let nf be the actual
cardinality of flow f . The noise term is ns � nf . We use the estimation formula from
[5, 8] or [9] (depending on which one is used) to give an estimation Ons of ns. Below
we focus on noise estimation.

Let n be the sum of all flows’ cardinalities. From the flow f ’s point of view, the
elements of all other flows, .n � nf / of them, are noise. Let Y be a random variable
for the number of noise elements recorded by an arbitrary register in M. When
the number of flows and the number of registers per estimator are both sufficiently
large and the cardinality of any flow is negligibly small when comparing with n, Y
approximately follows the binomial distribution Bino.n�nf ;

1
m /, because each noise

element has approximately an equal chance to be recorded by any register due to the
random selection of registers by virtual estimators. Hence,

E.Y/ D n � nf

m
:

58 3 Per-Flow Cardinality Measurement

The total noise, ns � nf , is the sum of individual noises in the s registers of Mf .
Hence, ns � nf can be considered as the sum of s independent random variables of
Bino.n � nf ;

1
m /.

E.ns � nf / D s E.Y/ D s
n � nf

m
(3.3)

By the law of large numbers in the probability theory, the relative variance
Var. ns�nf

E.ns�nf /
/ approaches to zero when s is large. In this case, E.ns � nf / can be

approximated by an instance value, ns � nf . We have

ns � nf � n � nf

m
s

nf � ms

m � s

�ns

s
� n

m

�
: (3.4)

We define a grand flow as the combination of all flows. With a few hundreds of
extra bytes and applying the HyperLogLog, we can obtain an accurate estimation
On for n (see Table 3.1), while the additional memory overhead is negligible when
comparing with the memory space M. Alternatively, since the elements of the grand
flow distribute approximately in uniform over M, we can use the entire register array
M as an estimator to give an estimation for n (using HyperLogLog, for example).

Let Onf be our estimation of nf . We have the following estimation formula
from (3.4):

Onf D ms

m � s
�
� Ons

s
� On

m

�
(3.5)

In the next section, we will select vHLL, i.e., virtual HyperLogLog, to discuss its
operations and performance in details.

3.5 Virtual HyperLogLog Estimator

In this section, as an example, we apply the framework of virtual estimators on
HyperLogLog for a new solution, vHLL, based on register-level sharing. This
solution consists of two components: one for recording the stream of packets in
the virtual HyperLogLog estimators, and the other for estimating the cardinality of
an arbitrary flow f .

3.5 Virtual HyperLogLog Estimator 59

3.5.1 Record Flow Elements in Virtual Estimator

Consider a flow f . When a measurement period begins, all registers in its virtual
estimator Mf are reset to zeros. For each arrival element e of flow f , we perform the
hashing below:

H.e/ D hx1x2: : :i (3.6)

p D hx1x2 : : : xbi
q D hxbC1xbC2; : : :i;

where hx1x2: : :i is binary format of the hash output H.e/, p denotes the leading b
bits with b equal to log2 s, and q represents the remaining bits. Using the value of
p, we can map e pseudo-randomly to a register Mf Œp mod s�. For clarity, we will
breviate Mf Œp mod s� simply as Mf Œp� afterwards.

The operation of recording e is simple: Let �.q/ be the number of leading zeros
in q plus one; for example, if q D 001: : :, then �.q/ D 3. Clearly, the probability
of �.q/ D i is . 1

2
/i, for 8i > 0. We update Mf Œp� if its current value is smaller than

�.q/. Namely,

Mf Œp� WD max
�
Mf Œp�; �.q/

�
; (3.7)

where WD is assignment operator. Hence, Mf Œp� has recorded (one plus) the longest
run of leading zeros from any element mapped to the register. Suppose Mf Œp� D
MŒHp.f /� as in (3.1), and Hp.f / D H.f j p/ as in (3.2). Combining (3.7), (3.1),
and (3.2), we have

MŒH.f j p/� WD max
�
MŒH.f j p/�; �.q/

�
: (3.8)

This assignment requires two hash operations: H.e/ for p and q in (3.6), and H.f j p/.
It also requires at most two memory accesses, reading MŒH.f j p/� and writing
MŒH.f j p/� back if its value changes. Note that the writing operation happens rarely
since the likelihood for �.q/ > MŒH.f j p/� to happen will decrease exponentially as
the register’s value increases.

Equation (3.8) shows that the operations are actually performed on the physical
register array M, and the virtual estimator is logical in the online recording phase.

3.5.2 Flow Cardinality Estimation

Given a flow label f for offline query, we construct Mf from the stored M. Consider
an arbitrary register Mf Œi�, 0� i < s. Any element mapped to this register had a
probability of 1

2
Mf Œi� to set the register to its current value. Hence, the estimation

for the number of elements mapped to this register is 2Mf Œi� [9].

60 3 Per-Flow Cardinality Measurement

Recall that ns is the total number of distinct elements that have been recorded
by the estimator Mf , including both elements in flow f and those in other flows
that share registers in Mf . In order to estimate ns, the normalized harmonic mean is
applied to aggregate the estimations from all registers in Mf :

Ons D ˛s � s2 �
� s�1X

jD0

2�Mf Œj�
��1

; (3.9)

where ˛s is a bias correction constant that equals

˛s D
�

s
Z 1

0

�
log2

�2C u

1C u

��m
du
��1

: (3.10)

The above equation for constant ˛s is complicated. Numerical values are often used
in practice: ˛16 D 0:673, ˛32 D 0:697, ˛64 D 0:709, and ˛s D 0:7213=.1 C
1:079=s/ for s
 128.

The estimator in (3.9) is good for large cardinalities, but it is severely biased
when dealing with small cardinalities [9]. For a small cardinality, we treat Mf as a
bitmap of s bits, with each register Mf Œi� converted to one bit, whose value is 1 when
Mf Œi� > 0 or zero otherwise. The estimation formula is Ons D �s log2 V , where V is
the fraction of bits in the bitmap that are zeros [17]. This formula is used when the
cardinality estimation by (3.9) is smaller than 2:5s.

Recall that we can estimate the sum On of all flow cardinalities based on a separate
estimator or simply from the whole array M using (3.10) where Ons is replaced with
On, s is replaced with m, and Mf is replaced with M. After computing both Ons and On,
we use (3.5) to compute the estimated flow cardinality Onf .

3.6 Estimation Bias and Variance

This section analyzes the bias and standard error of our vHLL estimator. From [9],
we have the following theorem:

Theorem 2. Let ns be the number of distinct elements that are mapped to a
HyperLogLog estimator Mf . Suppose the number s of registers in Mf is more
than 16.

• If ns is sufficiently large, the estimate Ons by (3.9) is asymptotically almost
unbiased in the sense that

1

ns
E. Ons/ D 1C ı1.ns/C o.1/;

where jı1.ns/j < 5 � 10�5 as soon as s
 16.

3.6 Estimation Bias and Variance 61

• The standard error defined as 1
ns

p
Var. Ons/ satisfies

1

ns

p
Var. Ons/ D ˇsp

s
C ı2.ns/C o.1/;

where jı2.ns/j < 5 � 10�4 as soon as s
 16. The constants ˇs being bounded,
with ˇ16 D 1:106, ˇ32 D 1:070, ˇ64 D 1:054, ˇ128 D 1:046, and ˇ1 D 1:039.

As stated in [9], the functions ı1 and ı2 represent oscillating functions of a tiny
amplitude, and they can be safely neglected for all practical purposes.

3.6.1 Estimation Bias

Given an arbitrary flow f , we know from Sect. 3.4 that ns is the sum of the flow
cardinality nf and a noise random variable ns � nf with a binomial distribution of
Bino.n � nf ;

s
m /. For 8i 2 Œ0; n � nf �, we have

Probfns � nf D ig D

n � nf

i

!
.

s

m
/i.1 � s

m
/n�nf �i: (3.11)

Under the condition of ns � nf D i, by Theorem 2, we have

E. Ons j ns � nf D i/ D .nf C i/
�
1C ı1.nf C i/C o.1/

�
� nf C i; (3.12)

with a small error bounded by a ratio of 5 � 10�5. Hence,

E. Ons/ D
n�nfX
iD0

E. Ons j ns � nf D i/�Probfns � nf D ig

�
n�nfX
iD0

.nf C i/�

n � nf

i

!
.

s

m
/i.1 � s

m
/n�nf �i

D nf C .n � nf /
s

m
: (3.13)

The value of On is estimated based on the entire array M or through a separate
estimator with hundreds of bytes (i.e., much more than 16 registers). From
Theorem 2, we have E.On/ D n.1 C ı1.n/ C o.1// � n, with a very small error
bounded by a ratio of 5 � 10�5. From the estimation formula (3.5), we have

62 3 Per-Flow Cardinality Measurement

rClE. Onf / D ms

m � s

�E. Ons/

s
� E.On/

m

�

� ms

m � s

�nf C .n � nf /
s
m

s
� n

m

�
D nf : (3.14)

Therefore, the vHLL estimator is approximately unbiased.

3.6.2 Estimation Variance

Next we derive the variance of Onf .

Var. Onf / D
� ms

m � s

�2�Var. Ons/

s2
C Var.On/

m2

�
(3.15)

D � ms

m � s

�2�E. Ons
2/ � �E. Ons/

�2
s2

C Var.On/

m2

�

D � m

m � s

�2�
E. Ons

2/ � �E. Ons/
�2 C .

s

m
/2Var.On/

�

With 8i 2 Œ0; n � nf /, under the condition of ns � nf D i, by Theorem 2, we have

1
nf Ci

p
Var. Ons j ns � nf D i/ D ˇsp

s
C ı2.nf C i/C o.1/

D ˇsp
s
� 1:04p

s
; (3.16)

where we use 1.04 to approximate ˇs, assuming s
 128, which is always the case
in our experiments later. Hence,

Var. Ons j ns � nf D i/ � 1:042

s
.nf C i/2: (3.17)

Similarly, we have

Var.On/ � 1:042

m
n2; (3.18)

where m is the number of registers in the physical estimator for n, and we let
m
 128. Because E. Ons

2 j nsDnfCi/ D Var. Ons j ns�nf D i/ C �E. Ons j ns � nf D i/
�2

,
from (3.12) and (3.17), when s is sufficiently large, we have

E. Ons
2 j ns D nf C i/ � 1:042.nf C i/2

s
C .nf C i/2

D .
1:042

s
C 1/.nf C i/2:

3.6 Estimation Bias and Variance 63

Combining (3.11) with the above equation, we have

E. Ons
2/ D

n�nfX
iD0

E. Ons
2 j ns � nf D i/Probfns � nf D ig (3.19)

�
n�nfX
iD0

.
1:042

s
C 1/.nf C i/2

n� nf

i

!
.

s

m
/i.1� s

m
/n�nf �i

D .
1:042

s
C 1/

�
nf

2 C 2nf E.ns � nf /C E..ns � nf /
2/
�

D .
1:042

s
C 1/

�
nf

2 C 2nf .n � nf /
s

m

C .n � nf /
s

m
.1 � s

m
/C .n � nf /

2.
s

m
/2
�

D .
1:042

s
C 1/

�
.nf C .n� nf /

s

m
/2 C .n� nf /

s

m
.1� s

m
/
�
:

Applying (3.13), (3.18) and (3.19) to (3.15), we have

Var. Onf / �
� m

m � s

�2�1:042

s

�
nf C .n � nf /

s

m

�2

C .n � nf /
s

m
.1 � s

m
/C .

s

m
/2 1:042

m
n2
�
: (3.20)

Consider the three terms between the parentheses after
�

m
m�s

�2
. We know that the

noise ns � nf follows a binomial distribution Bino.n � nf ;
s
m /, whose mean is given

by (3.3) as .n � nf /
s
m . Hence, the first term is the estimation variance for the flow

cardinality plus the mean noise. The noise variance is .n � nf /
s
m .1 � s

m /, which is

captured by the second term. The third term . s
m /2 1:042

m n2 is caused by the estimation
On for the grand flow.

3.6.3 Relative Standard Error

We define the relative standard error as

StdErr
� Onf

nf

� D
p

Var. Onf /

nf
: (3.21)

64 3 Per-Flow Cardinality Measurement

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

re
la

tiv
e

st
an

da
rd

 e
rr

or

s : size of virtual estimator (x 1000)

n = 1 x 106

n = 2 x 106

n = 4 x 106

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

re
la

tiv
e

st
an

da
rd

 e
rr

or

s : size of virtual estimator (x 1000)

n = 1 x 106

n = 2 x 106

n = 4 x 106

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

re
la

tiv
e

st
an

da
rd

 e
rr

or

s : size of virtual estimator (x 1000)

n = 1 x 106

n = 2 x 106

n = 4 x 106

(c)

Fig. 3.8 Relative standard error with respect to s, n, and nf . (a) Flow cardinality nf D1 � 104.
(b) Flow cardinality nf D2 � 104. (c) Flow cardinality nf D4 � 104

From (3.20) and (3.21), we also observe that the relative standard error (or error in
short) increases as the cardinality of grand flow n increases, and it decreases as the
cardinality of target flow nf grows.

Below we use some numerical examples to illustrate the above observations and
the interplay between different sources of estimation error. Suppose the allocated
memory is m D 256K. Consider a target flow cardinality of nf D 104. Figure 3.8a
shows the numerically computed estimation error by (3.21) with respect to s (the
number of registers per virtual estimator) along the horizontal axis and n (the
combined cardinality of all flows) for different curves. Starting from 16, as s
increases, the error drops quickly, thanks to improved estimation accuracy from the
virtual estimator Mf as predicted by Theorem 2. However, when s becomes further
larger (more than 256 in the figure), the rate of improvement drops significantly,
which can also be predicted by Theorem 2 with its factor of improvement being 1p

s
.

Moreover, as s increases, the error caused by noise increases. Combining these two
factors, we observe that when s is relatively large (for a wide range from 500 to
2000 in the figure), its impact on the error becomes more or less stabilized.

3.7 Experimental Evaluation 65

From Fig. 3.8a–c, we increase nf and observe that the error decreases, which
means that the relative standard error is smaller for flows of larger cardinalities
(although their absolute errors can still be larger). When n increases, the error
increases, as predicted.

3.7 Experimental Evaluation

We have implemented the vHLL solution and the most related work PMC [12].
vHLL is based on register sharing, while PMC is based on bit-level sharing.
We compare their performance through experiments using real network traces
downloaded from CAIDA [16]. The traces are captured by a high-speed monitor
named equinix-sanjose (located in San Jose, CA, USA), which is connected to a 10-
Gbit/s Ethernet backbone link. Each trace file captures the packets in 1 min. In order
to create larger traces for our experiments, we download 60 traces and combine
them into 6 larger ones, each for 10 consecutive minutes. The statistics of the large
traces can be found in Table 3.3.

We consider per-source flows and measure the number of distinct destinations
that each source sends packets to. The distribution of the flows with respect to
the cardinality has been shown previously in Fig. 3.5. We stress that the purpose
of our experiments is primarily technical—evaluating how accurate our vHLL is
on cardinality estimation, while the case study of measuring per-source flows may
find use in profiling scanners, identifying popular hosts on the Internet (server
sources send data to a large number of clients), and detecting anomaly based on
measurement over consecutive periods, such as the detection of a worm-infected
host by observing that it suddenly deviates from normal behavior by probing a large
number of different destination addresses [4, 22].

3.7.1 Estimation Accuracy in Tight Memory

We evaluate the impact of memory space on the accuracy of cardinality estimation
for vHLL and PMC. To make a fair comparison between the two, they are allocated
with the same memory to process the CAIDA traces. For vHLL, we configure the

Table 3.3 Trace statistics

Time (min) Num. of flows Total cardinality Mean flow cardinality

1–10 1,473,306 2,675,506 1.8

11–20 1,013,517 1,856,676 1.8

21–30 1,648,779 3,005,649 1.8

31–40 1,562,288 2,881,330 1.8

41–50 1,612,709 3,280,242 2.0

51–60 1,612,605 3,280,138 2.0

66 3 Per-Flow Cardinality Measurement

value of s to 512 by default, but will vary its value in later experiments. Recall that
m is the total number of registers in the common pool. Its value depends on the
overall available memory. The average number of flows in all six traces is about 1.5
millions. We vary the available memory space from 1.5 Mb to 0.75 Mb to 0.375
Mb to 0.15 Mb, such that the average memory per flow is about 1 bit, 0.5 bit, 0.25
bit, and 0.1 bit, respectively. The corresponding experimental results are presented
in Figs. 3.9, 3.10, 3.11, and 3.12, respectively. Again, each flow is represented by a
point, whose x-coordinate is the true cardinality and y-coordinate is the estimated
cardinality. The equality line is also shown. The closer a point is to the line, the
more accurate the estimation is.

In Fig. 3.9, plot (a) shows the performance of vHLL with average memory of 1 bit
per flow. The points are clustered around the equality line (y D x), indicating good
accuracy. Plot (b) shows the performance of PMC with the points scattering away
from the equality line. Plot (c) compares the two solutions in terms of estimation

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

vHLL

(a)

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(x
10

00
)

actual cardinality (x1000)

PMC

(b)

-1

-0.5

 0

 0.5

 1

1 5 10 20 30 40

re
la

tiv
e

bi
as

actual cardinality (x1000)

vHLL
PMC

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

tiv
e

st
an

da
rd

 e
rr

or

actual cardinality (x1000)

vHLL
PMC

(d)

Fig. 3.9 Compare vHLL and PMC with 1 bit per flow. (a) vHLL with 1 bit per flow. (b) PMC
with 1 bit per flow. (c) Estimation bias. (d) Estimation accuracy

3.7 Experimental Evaluation 67

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

vHLL

(a)

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

PMC

(b)

-1

-0.5

 0

 0.5

 1

1 5 10 20 30 40

re
la

tiv
e

bi
as

actual cardinality (1000)

vHLL
PMC

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

tiv
e

st
an

da
rd

 e
rr

or

actual cardinality (1000)

vHLL
PMC

(d)

Fig. 3.10 Compare vHLL and PMC with 0.5 bit per flow. (a) vHLL with 0.5 bit per flow. (b) PMC
with 0.5 bit per flow. (c) Estimation bias. (d) Estimation accuracy

bias. The vertical axis is the relative bias defined as E.
nf � Onf

nf
/. Since there are too

few flows for some cardinalities (especially the large ones) in our Internet trace, we
divide the horizontal axis into measurement bins of width from 5000 on the high end
in the plots to 1000 in the low end to ensure that each bin has a sufficient number of
flows 25, and measure the bias and standard deviation in each bin. In general, PMC
has larger bias than vHLL. Plot (d) compares the two solutions in terms of accuracy.
The vertical axis is the relative standard error of the estimation results, which

is defined as
p

Var. Onf /

nf
. The measurement also uses the bin method as previously

explained. vHLL has much smaller error than PMC. This result is expected because
according to [12], the performance of PMC is related to the so-called fill rate, i.e.,
the fraction of bits that are set to ones in the common bit pool. The intended fill
rate for PMC to perform well is in the range of .0; 0:5/. When the memory is 0.5
bit per flow, the fill rate is about 0.76 in our experiment, which explains why PMC
performs relatively poor. Specifically, when the actual cardinality is 10,000, 20,000,

68 3 Per-Flow Cardinality Measurement

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

vHLL

(a)

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

PMC

(b)

-1

-0.5

 0

 0.5

 1

1 5 10 20 30 40

re
la

tiv
e

bi
as

actual cardinality (1000)

vHLL

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

tiv
e

st
an

da
rd

 e
rr

or

actual cardinality (1000)

vHLL

(d)

Fig. 3.11 Compare vHLL and PMC with 0.25 bit per flow. (a) vHLL with 0.25 bit per flow.
(b) PMC with 0.25 bit per flow. (c) Estimation bias. (d) Estimation accuracy

and 30,000, the measured errors by PMC are 0.22, 0.28, and 0.23, respectively,
while those by vHLL are 0.055, 0.043, and 0.044, respectively.

Figure 3.10 makes the same set of comparison with 0.5 bit per flow. The
performance of vHLL remains good, whereas PMC no longer works as its fill
rate becomes 0.9. For example, when the actual cardinality is 10,000, 20,000, and
30,000, the measured errors by PMC are 0.74, 0.67, and 0.87, respectively, while
those by vHLL are 0.073, 0.065, and 0.049, respectively.

As the average memory per flow decreases to 0.25 bit and further to 0.1
bit, Figs. 3.11 and 3.12 show that vHLL still works with gradually deteriorating
accuracy. For 0.25 bit per flow, when the actual cardinality is 10,000, 20,000, and
30,000, the measured errors by vHLL are 0.10, 0.095, and 0.096, respectively. For
0.25 bit per flow, when the actual cardinality is 10,000, 20,000, and 30,000, the
measured errors by vHLL are 0.15, 0.13, and 0.10, respectively. We also point out
that although the relative standard errors for small flows are higher, it does not

3.7 Experimental Evaluation 69

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

vHLL

(a)

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

PMC

(b)

-1

-0.5

 0

 0.5

 1

1 5 10 20 30 40

re
la

tiv
e

bi
as

actual cardinality (1000)

vHLL

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

tiv
e

st
an

da
rd

 e
rr

or

actual cardinality (1000)

vHLL
(d)

Fig. 3.12 Compare vHLL and PMC with 0.1 bit per flow. (a) vHLL with 0.1 bit per flow. (b) PMC
with 0.1 bit per flow. (c) Estimation bias. (d) Estimation accuracy

entirely diminish the usefulness of these estimations because the absolute errors
for small flows are in fact much smaller than those of large ones. For example, by
examining the first plot of each figure, one will not mistake a small flow for a large
one due to the modest absolute error.

3.7.2 Impact of Value s on vHLL

Our second set of experiments evaluate the impact of s (number of registers per
virtual estimator) on estimation accuracy. We repeat the experiment in Fig. 3.10a
with average memory of 0.5 bit per flow, but change s from 512 to values: 128,
256, and 1024. The results are shown in Fig. 3.13a–c, respectively. Corresponding
relative standard errors are shown in Fig. 3.14a–c, respectively.

70 3 Per-Flow Cardinality Measurement

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

vHLL

(a)

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

vHLL

(b)

1
5

10

20

30

40

1 5 10 20 30 40

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

vHLL

(c)

Fig. 3.13 Cardinality estimation with different values of s under average memory of 0.5 bit per
flow. (a) s D 128. (b) s D 256. (c) s D 1024

We observe that when s is relatively small at 128, the estimation accuracy in
Fig. 3.13a is noticeably worse than that in Fig. 3.10a, which is evident from the fact
that the points of the former surround the equality line less tightly. Quantitatively,
the errors in Fig. 3.14a with s D 128 are larger than those in Fig. 3.14d for vHLL
with the default s D 512. For example, when the actual cardinality is 20,000, the
relative standard error under s D 128 is 10.9 %, while that under s D 512 is 6.5 %.

However, when s becomes large enough (more than 256), for a wide range
of values, the impact of s on the estimation accuracy stabilizes, which is evident
when comparing Figs. 3.13b, c and 3.10a, whose s values are 256, 512, and 1024,
respectively. For example, when the actual cardinality is 20,000, their errors are
8.1 %, 6.5 %, and 5.2 %, based on from Figs. 3.14b, c, and 3.10d, respectively.

The above observations are consistent with our analysis in Sect. 3.6 and the
numerical results in Fig. 3.8 (which has different parameters though). The reasons
for these observations have been explained in Sect. 3.6.3 and will not be repeated
here.

3.7 Experimental Evaluation 71

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

tiv
e

st
an

da
rd

 e
rr

or

actual cardinality (1000)

vHLL
(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

tiv
e

st
an

da
rd

 e
rr

or

actual cardinality (1000)

vHLL
(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

tiv
e

st
an

da
rd

 e
rr

or

actual cardinality (1000)

vHLL
(c)

Fig. 3.14 Relative standard errors of cardinality estimation with different values of s under
average memory of 0.5 bit per flow. (a) s D 128. (b) s D 256. (c) s D 1024

3.7.3 Impact of Overall Traffic

Our third set of experiments investigate how the overall traffic volume affects
estimation accuracy. The overall traffic volume is characterized by n, the sum of all
flows’ cardinalities, because duplicates in the traffic must be removed in our context.
The greater the value of n is, the larger the average noise level on each register will
be, which will in turn negatively affect the estimation accuracy of a virtual estimator
consisting of s registers.

We artificially increase the cardinality of each flow by a factor randomly chosen
from the range of Œ1; 3�, which doubles the cardinality on average. The value of n
is thus expected to be doubled. We then repeat the experiment in Fig. 3.10a with
average memory of 0.5 bit per flow. The results are presented in Fig. 3.15, where
plot (a) shows raw estimated cardinalities, plot (b) shows the estimation bias, and
plot (c) shows the relative standard error. The bias remains close to zero, particularly

72 3 Per-Flow Cardinality Measurement

5
10

20

30

40

50

60

70

5 10 20 30 40 50 60 70

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

vHLL

(a)

-1

-0.5

 0

 0.5

 1

5 10 20 30 40 50 60 70

re
la

tiv
e

bi
as

actual cardinality (1000)

vHLL

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 20 30 40 50 60 70

re
la

tiv
e

st
an

da
rd

 e
rr

or

actual cardinality (1000)

vHLL
(c)

Fig. 3.15 Cardinality estimation with n doubled under average memory of 0.5 bits per flow. (a) n is
doubled. (b) Estimation bias. (c) Estimation accuracy

for large flows. The error is modest, but larger than that in Fig. 3.10d where the value
of n is half, which confirms our prediction above.

We further enlarge n by increasing the cardinality of each flow with a factor
randomly chosen from the range of Œ1; 7�. The value of n is expected to be increased
by four folds. The results are presented in Fig. 3.16. Again the bias is close to one,
but the error increases.

3.7.4 A Case Study: Detect Super Destinations

Our last set of experiments compare vHLL and PMC based on a hypothetical
application for detecting the so-called super destinations. In this case study, we
consider per-destination flows and measure the number of distinct sources that

3.7 Experimental Evaluation 73

5
10

20

30

40

50

60

70

5 10 20 30 40 50 60 70

es
tim

at
ed

 c
ar

di
na

lit
y

(
10

00
)

actual cardinality (1000)

vHLL

(a)

-1

-0.5

 0

 0.5

 1

5 10 20 30 40 50 60 70

re
la

tiv
e

bi
as

actual cardinality (1000)

vHLL

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 20 30 40 50 60 70

re
la

tiv
e

st
an

da
rd

 e
rr

or

actual cardinality (1000)

vHLL

(c)

Fig. 3.16 Cardinality estimation with n increased four folds under average memory of 0.5 bits per
flow. (a) n is increased by four folds. (b) Estimation bias. (c) Estimation accuracy

access a destination address in each measurement period, using the same Internet
traces. Suppose the policy is to report all the destinations that have been accessed by
5000 or more sources within a measurement period. These super destinations may
be used for profiling the popular servers (or services) in the network or triggering
anomaly warnings (such as potential DDoS attacks) if they were never reported as
super destinations before.

If a destination with a cardinality less than 5000 is reported, it is called a false
positive. If a destination with a cardinality 5000 or above is not reported, it is
called a false negative. We define the false positive ratio (FPR) as the number of
false positives divided by the total number of destinations reported. Based on this
definition, if FRP is 0.1, it means 10 % of the reported destinations should not have
been reported. We define the false negative ratio (FNR) as the number of false
negatives divided by the number of destinations whose cardinalities are 5000 or
more.

74 3 Per-Flow Cardinality Measurement

Table 3.4 False positive
ratio and false negative ratio
with respect to memory cost

PMC vHLL

Memory (bit per flow) FPR FNR FPR FNR

0.25 0.992 0.048 0.039 0.026

0.5 0.737 0.045 0.034 0.013

1 0.039 0.044 0.012 0.014

Table 3.5 � D 10 %, false
positive ratio and false
negative ratio with respect to
memory cost

PMC vHLL

Memory (bit per flow) FPR FNR FPR FNR

0.25 0.992 0.010 0.014 0.010

0.5 0.846 0.029 0.003 0.003

1 0.013 0.017 0.003 0.002

Table 3.6 � D 20 %, false
positive ratio and false
negative ratio with respect to
memory cost

PMC vHLL

Memory (bit per flow) FPR FNR FPR FNR

0.25 0.991 0.003 0.007 0.006

0.5 0.953 0.021 0.0 0.0

1 0.010 0.002 0.0 0.0

The experimental results are shown in Table 3.4. Clearly, vHLL outperforms
PMC by a wide margin when we take both FPR and FNR into consideration. The
FNR is close to zero for PMC when the memory is 0.5 bit per flow or less. That
is because PMC becomes a positively biased estimator in such a small memory as
depicted in Fig. 3.10b. Its FPR is 73.7 % for 0.5 bit per flow and 99.2 % for 0.25 bit
per flow.

vHLL also has non-negligible FPR and FNR since its estimated cardinality is
not exactly the true cardinality. To confine impreciseness to a certain degree, the
policy may be relaxed to report all destinations whose estimated cardinalities are
5000� .1� �/ or above, where 0 � � < 1. If a destination less than 5000� .1� 2�/

gets reported, it is called an �-false positive. If a destination with a true cardinality
5000 or more is not reported, it is called an �-false negative. The FPR and FNR are
defined the same as before. The experimental results for � D 10 % are shown in
Table 3.5, and those for � D 20 % are shown in Table 3.6, where the FPR and FNR
for vHLL are merely 0.7 % and 0.6 %, respectively, when the memory is 0.25 bit
per flow. In Table 3.6, when the memory grows to at least 0.5 bit per flow, FPR and
FNR for vHLL become zeros.

3.8 Summary

In this chapter, we present a unified framework for developing efficient solutions to
the problem of estimating cardinalities for a very large number of streaming flows.
From this framework, we examine a particularly powerful solution called virtual

References 75

HyperLogLog (vHLL) in details. Through analysis and experimental evaluation,
we show that vHLL can use a compact memory space (down to 0.1 bit per flow
on average) to estimate the cardinalities of flows with wide range and reasonable
accuracy. This new capability enables on-chip implementation of cardinality estima-
tion needed for online applications that can keep up with the line speed of modern
routers, or allow efficient processing of big data by using low-cost commodity
computers instead of expensive high-performance computing systems.

References

1. Bar-yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L., Luca: Counting distinct
elements in a data stream. In: Proceedings of the RANDOM: Workshop on Randomization
and Approximation (2002)

2. Beyer, K., Haas, P.J., Reinwald, B., Sismanis, Y., Gemulla, R.: On synopses for distinct-value
estimation under multiset operations. In: Proceedings of the ACM SIGMOD (2007)

3. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the Count-Min sketch
and its applications. In: Proceedings of the LATIN (2004)

4. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vigilante:
end-to-end containment of internet worms. SIGOPS Operat. Syst. Rev. 39(5), 133–147 (2005)

5. Durand, M., Flajolet, P.: Loglog counting of large cardinalities. In: ESA: European Symposia
on Algorithms, pp. 605–617 (2003)

6. Estan, C., Varghese, G.: New directions in traffic measurement and accounting. In: Proceedings
of the ACM SIGCOMM (2002)

7. Estan, C., Varghese, G., Fish, M.: Bitmap algorithms for counting active flows on high-speed
links. IEEE/ACM Trans. Netw. 14(5), 925–937 (2006)

8. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for database applications. J. Com-
put. Syst. Sci. 31(2), 182–209 (1985)

9. Flajolet, P., Fusy, E., Gandouet, O., Meunier., F.: HyperLogLog: the analysis of a near-optimal
cardinality estimation algorithm. In: Proceedings of the AOFA: International Conference on
Analysis of Algorithms (2007)

10. Heule, S., Nunkesser, M., Hall, A.: HyperLogLog in practice: algorithmic engineering of a
state-of-the-art cardinality estimation algorithm. In: Proceedings of the EDBT (2013)

11. Li, T., Chen, S., Ling, Y.: Fast and compact per-flow traffic measurement through randomized
counter sharing. In: Proceedings of the IEEE INFOCOM, pp. 1799–1807 (2011)

12. Lieven, P., Scheuermann, B.: High-speed per-flow traffic measurement with probabilistic
multiplicity counting. In: Proceedings of IEEE INFOCOM, pp. 1–9 (2010). doi:10.1109/INF-
COM.2010.5461921

13. Lu, Y., Montanari, A., Prabhakar, B., Dharmapurikar, S., Kabbani, A.: Counter braids: a novel
counter architecture for per-flow measurement. In: Proceedings of ACM SIGMETRICS (2008)

14. Neustar.biz: How to choose a good hash function: part 3. (2012) http://research.neustar.biz/
2012/02/02/choosing-a-good-hash-function-part-3

15. Ntarmos, N., Triantafillou, P., Weikum, G.: Counting at large: efficient cardinality estimation
in internet-scale data networks. In: Proceedings of the ICDE, pp. 40–40 (2006). doi:10.1109/
ICDE.2006.44

16. The CAIDA UCSD Anonymized 2013 Internet Traces - January 17 (2013). http://www.caida.
org/data/passive/passive_2013_dataset.xml

17. Whang, K.Y., Vander-Zanden, B.T., Taylor, H.M.: A linear-time probabilistic counting algo-
rithm for database applications. ACM Trans. Database Syst. 15(2), 208–229 (1990)

 http://dx.doi.org/10.1109/INFCOM.2010.5461921
http://research.neustar.biz/2012/02/02/choosing-a-good-hash-function-part-3
http://research.neustar.biz/2012/02/02/choosing-a-good-hash-function-part-3
10.1109/ICDE.2006.44
10.1109/ICDE.2006.44
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.caida.org/data/passive/passive_2013_dataset.xml

76 3 Per-Flow Cardinality Measurement

18. Xiao, Q., Xiao, B., Chen, S.: Differential estimation in dynamic RFID systems. In: Proceedings
of the INFOCOM (Mini-Conference), pp. 295–299 (2013)

19. Xiao, Q., Qiao, Y., Zhen, M., Chen, S.: Estimating the persistent spreads in high-speed
networks. In: Proceedings of the IEEE ICNP, pp. 131–142 (2014)

20. Yoon, M., Li, T., Chen, S., Peir, J.K.: Fit a spread estimator in small memory. In: Proceedings
of the IEEE INFOCOM (2009)

21. Zhao, Q., Xu, J., Kumar, A.: Detection of super sources and destinations in high-speed
networks: algorithms, analysis and evaluation. IEEE JASC 24(10), 1840–1852 (2006)

22. Zou, C.C., Gao, L., Gong, W., Towsley, D.: Monitoring and early warning for internet worms.
In: Proceedings of the 10th ACM Conference on Computer and Communications Security
(2003)

Chapter 4
Persistent Spread Measurement

The persistent spread of a destination host is the number of distinct sources that
have contacted it persistently in predefined t measurement periods. A persistent
spread estimator is a software/hardware component in a router that inspects the
arrival packets and estimates the persistent spread of each destination. This is a new
primitive for network measurement that can be used to detect long-term stealthy
malicious activities, which cannot be recognized by the traditional superspreader
detectors that are designed only for “elephant" activities. This chapter presents an
estimator that can use very tight memory space to deliver high estimation accuracy:
Its memory expense is less than one bit per-flow element in each time period; Its
estimation accuracy is over 90 % better than a continuous variant of Flajolet–Martin
sketches; Its operating range to produce effective measurements is hundreds of times
broader than the traditional bitmap. These advantages originate from a new data
structure called multi-virtual bitmap, which is designed to estimate the cardinality
of the intersection of an arbitrary number of sets. The effectiveness of the new
estimator is verified using the real network traffic traces from CAIDA.

4.1 Problem Statement

A persistent spread estimator is a software/hardware module on a gateway router
(or a core router) to monitor the traffic flows passing through the router. Here, a
flow can be either a per-destination flow or a per-source flow. An example of a
per-destination flow is illustrated in Fig. 4.1, where a server inside an intranet is
contacted by a set of external hosts. All the packets sent from the external hosts to
the server constitute a per-destination flow, which is inspected by the gateway.

A per-destination (source) flow is all the packets towards a common destination
(source) address, and the flow elements are the source (destination) addresses in the
packet stream. For a flow of interest, let Si be the set of flow elements observed

© Springer International Publishing AG 2017
S. Chen et al., Traffic Measurement for Big Network Data, Wireless Networks,
DOI 10.1007/978-3-319-47340-6_4

77

78 4 Persistent Spread Measurement

Machine

Normal
User

Gateway
Router

Server

Internet Intranet

Persistent
Spread

Transient Elements
Persistent Elements

Fig. 4.1 Persistent spreads can help detect stealthy DDoS attacks

by the router in the ith measurement period. These elements can be divided into
two subsets. (1) The elements in the set S� D S1 \ S2 : : : \ St are called the
persistent elements, which stay in the flow for t consecutive periods, and t is a system
parameter that is configurable by network administrators. (2) The elements in the set
Si � S� are called the transient elements in the ith period. Typically, for a transient
element, its packets can be observed by the gateway router only in a few periods,
which is similar to a normal user finishing his/her online transaction within one
or two periods. We do not deny the possibility that a small proportion of users are
heavy users that occupy more than two periods. We only need their online time to be
smaller than the number of periods t, which makes them differ from the persistent
elements.

The persistent spread measurement is to design an algorithm that can efficiently
estimate the cardinality of persistent elements jS�j for any flow of interest, or called
its persistent spread. This problem has many important applications, and we list just
a few. (1) For per-destination flows, their persistent spreads can help to expose the
stealthy DDoS attacks or the forging of server popularity. An example of stealthy
DDoS attacks is shown in Fig. 4.1, where three compromised machines are sending
requests repeatedly to the server to downgrade its performance. We want to detect
the existence of these persistent attacking hosts from their number. (2) For per-
source flows, their persistent spreads can help detect network scanning. Since a
network scanner avoids the redundant probing of the same network segment, its
persistent spread jS�j is ultra low, while the number of destination addresses jSij it
contacted in each period is considerable.

For simplicity, we have assumed t consecutive time periods and treat their
intersection S� D S1 \ S2 : : : \ St as persistent elements. Note that a router can
also record the traffic in non-consecutive periods and define their intersection (e.g.,
S1 \ S3 : : :\ S2t�1) as persistent elements, such that the attackers cannot predict our
pattern for detecting malicious activities.

A precondition for persistent spreads to be useful is that they are small in normal
traffics, so that an abnormally large measurement becomes an effective indication
of stealthy attacks. We verify this assumption by analyzing the real network traffic
traces downloaded from CAIDA [11]. These traces are collected on January 17th,

4.1 Problem Statement 79

Table 4.1 Rapid decrease of persistent spread as the growth of
number of periods

HTTP Server 224.243.38.27/80
Number of periods 1 2 3 4 5 6
Persistent spread 31255 3902 223 66 30 14

HTTP Server 50.13.250.2/80
Number of periods 1 2 3 4 5 6
Persistent spread 50003 578 100 37 16 7

HTTPS Server 224.243.38.27/443
Number of periods 1 2 3 4 5 6
Persistent spread 58478 6379 780 378 227 133

HTTPS Server 224.243.38.7/443
Number of periods 1 2 3 4 5 6
Persistent spread 55355 8616 1661 685 301 142

Relation between the persistent spread and the number of periods,
where each period lasts 10 min

2013 from a high-speed monitor named equinix-sanjose, connected to a 10G
Ethernet backbone link. In these traces, we locate tens of server machines with large
spreads in single time period. In Table 4.1, we list the traffic pattern of four such
servers which are not under attacks. In the table, the length of one measurement
period is configured to 10 min, and the number of periods t varies from one to six.
We investigate the impact of t on the persistent spread jS�j D jS1 \ S2 : : : \ Stj,
when there are no persistent attacks.

This table shows that, in normal traffic with no attacks, the persistent spread
reduces rapidly as t increases, and it becomes negligibly small when t is at least
three. Take the HTTP server 224.243.38.27/80 as an example. When the number of
periods grows to six (about an hour), the persistent spread decreases to 14, which can
be neglected if compared with the one-period spread 31255. Such a phenomenon
is not difficult to understand, since very few persons would keep browsing the
same website for an hour without taking a break or switching to another website.
For HTTPS server 224.243.38.7/443, a similar phenomenon can be found. When
the number of periods is six, the persistent spread is 142, a larger number than
HTTP servers. It shows that users are prone to stay online for longer time if using
HTTPS as the communication protocol. But 142 is still a negligibly small amount if
compared with 55355—the spread in one period.

We have tested other types of servers that use unfamiliar ports. We find that
when contacting chat or video servers, users will stay much longer than on web
servers. But the continuous online time of legitimate users is still limited. Hence,
when the length of a measurement period is long enough, it can contain a typical
user’s continuous behavior within this period. In this case, persistent spreads will
become negligibly small when the number of periods t is large enough, since the
probability for a legitimate user’s online time to be significantly longer than the rest

80 4 Persistent Spread Measurement

is negligible. Therefore, an abnormally large persistent spread is likely to be a good
indicator for stealthy attacks.

Without loss of generality, we consider a per-destination flow corresponding to
the server dst, and we want to estimate its persistent spread n� D jS�j. We can
alternate the role of source and destination, and use the same estimator to measure
the persistent spread of a given source.

4.2 Preliminary Solutions

This section presents two straightforward solutions, to motivate our design based on
bitwise AND of multiple bitmaps.

4.2.1 Hash Table Solutions

A naive solution is that a router records the set of source addresses Si, 1 � i � t,
that have contacted the server dst in each time period. The set Si in the ith period
can be stored in the on-chip SRAM as a hash table. When the period ends, Si can be
downloaded to permanent storage for post-processing. With a series of such sets S1,
S2, : : :, St, we can calculate their intersection, which contains the persistent elements
that last for t periods. The advantage of this solution is the precise calculation of
persistent spread jS1 \ S2 : : : \ Stj.

However, the solution has the shortcoming of high memory cost. In the ith
period, hash set Si is kept in on-chip SRAM; when the period ends, Si is offloaded
to permanent storage. We only consider the cost of precious on-chip SRAM.
Therefore, the memory cost for this algorithm is O

�
.32C32/ �max.jSij/

�
bits, where

the first 32 means the length of an IPv4 address for one flow element, the second
32 means the 32-bit pointer needed by the chained hash table for each element, and
max.jSij/ is the largest spread in each time period. Therefore, the memory cost is 64
bits per-flow element, which is quite expensive.

In most cases, the exact values of persistent spreads are not necessary, and their
approximated values with bounded estimation errors can suffice the requirement
of traffic measurement. To approximate a persistent spread, a method is to store the
short signatures of IP addresses into a hash table. For each IP address x, its signature
is a hash value H.x/ that is just k bits long (k < 32). This reduces memory cost by
multiple folds as compared with the 32-bits IPv4 or 128-bits IPv6 addresses.

However, the enhancement by partial signatures owns two inadequacies. Firstly,
it is prone to underestimate the persistent spreads: When two persistent elements are
mapped to the same hash bucket and are encoded by the same signature, they will
counted as one element. Secondly, its memory cost is still O

�
.k C 32/ � max.jSij/

�
,

4.2 Preliminary Solutions 81

where k is the length of a partial signature which can be 4 or 8 bits, and 32 is
the length of a pointer needed by chained hash table. Hence, the memory cost is
still k C 32 bits per-flow element in one period. Our vision is to reduce memory
cost to less than one bit per element, and with such limited space, still render
satisfactory accuracy.

4.2.2 Bitmap-Based Method

Another solution is to adopt bitmap algorithm [12] for persistent spread estimation.
Let B be a bit array allocated for the flow dst, called a bitmap. Its ith bit is denoted
by BŒi�, 0 � i < m. Its number of bits m is configured on the scale of max.jSij/.

At the beginning of the ith period, all the bits of array B are initialized to zero.
When the router receives a packet hsrc; dsti that is destined to the server dst, it
categorizes the packet to the flow dst, and maps the source address src to the flow’s
bitmap B to record the flow element. The hash function H.src/ decides which bit
will be set in B.

BŒH.src/ mod m� WD 1 (4.1)

Here, WD is the assignment operator, and the hash function H is implemented by
MurMur3 hashing. Note that this bitmap structure is “duplicate-insensitive,” i.e.,
duplicated addresses will set the same bit and be filtered.

At the end of the ith period, the router has recorded in the bitmap B all the source
addresses that have contacted the destination server dst within this interval. We
denote the bitmap of the ith period by Bi. The router will download Bi from on-
chip SRAM to DRAM for post-processing.

Given a sequence of bitmaps B1; B2; : : : ; Bt in main memory that have recorded
the flow dst’s traffic for t consecutive periods, our problem is to design an algorithm
that can use these bitmaps to estimate n� D jS1 \ S2 : : : \ Stj. Here, the persistent
spread n� is the number of distinct elements that persist through the t time periods
and appear in all the bitmaps.

Bitwise OR For this problem, a possible solution is to calculate the union bitmap
B1_B2 : : :_Bt by bitwise OR, and extract information from it about jS1[S2 : : :[Stj
to assist the estimation of persistent spread (please search for inclusion–exclusion
principle). However, this solution has poor accuracy when t is large. This is
because the estimation accuracy of a bitmap algorithm depends on the fill rate—the
proportion of bits in a bitmap that are set to one: The higher the fill rate, the worse
the estimation accuracy [12]. Since the fill rate of union bitmap B1 _ B2 : : : _ Bt

increases as t grows, any algorithm based on the union will experience the accuracy
degradation. The accuracy loss as t value grows will prohibit network operators
to configure an arbitrarily large t, which is critical for differentiating persistent
elements from transient elements.

82 4 Persistent Spread Measurement

Bitwise AND Instead of the union bitmap, an alternative solution is to calculate
the intersection bitmap B� D B1 ^ B2 : : : ^ Bt by bitwise AND. As stated in (4.1),
each flow element picks a bit in Bi pseudo-randomly by hash function H. Hence, a
persistent element always sets the same bit in bitmap Bi, irrelevant of the index
i of a time period. If a persistent element sets the jth bit in B1 to one, then in
subsequent bitmaps, the jth bit will be set to one. Hence, we probably can estimate
the number of persistent elements, by counting the bits that are “1” in all the bitmaps
B1; B2; : : : ; Bt, or equivalently, the number of “1” bits in the intersection bitmap
B� D B1 ^ B2 : : : ^ Bt.

While using the intersection bitmap B�, the main difficulty to achieve satisfactory
estimation accuracy is the false positive probability, which is the probability for
a bit to be assigned to “1” in each time period by different transient elements,
making the bit look as if it were set by a persistent element. This phenomenon
occurs mostly frequently when the bitmaps B1; B2; : : : ; Bt are overly dense with just
a small proportion of zero bits (especially when the number of periods t is small).
We will address this false positive issue shortly.

4.3 Estimator Based on Intersection Bitmap

Based on the intersection bitmap B�, in this section, we present an algorithm to
estimate the cardinality of persistent elements in S� D S1 \ S2 : : : \ St, for an
arbitrary number of time periods t. In a single period, putting the persistent elements
aside, other elements Si � S� are called transient elements, which are generated by
the comes and goes of normal users. We will filter the short-term network traffic,
and estimate the number of persistent elements n� D jS�j.

4.3.1 Analysis of Real Network Traces

Before proceeding to detailed analysis, we firstly verify our assumption about
rough independence of transient elements in different measurement periods. The
verification uses the traces of real network traffic from CAIDA [11]. In the trace
files, we have identified tens of servers with low persistent spreads and free from
malicious attacks. Hence, for such servers, almost all of their traffics can be regarded
as transient elements due to the intersection between normal users and servers. In
Table 4.2, we have tested the inter-dependency of transient traffics, in two arbitrary
measurement periods. The subtable (a) is about a HTTP server 224.243.38.27/80,
and the subtable (b) is for a HTTPS server 224.243.38.27/443. In both of them, the
length of a measurement period is configured to 7 min, and there is a spacing that
lasts for 3 min between any two adjacent periods, in order to reduce the chance of
normal users’ activities crossing the border of two neighboring periods.

4.3 Estimator Based on Intersection Bitmap 83

Table 4.2 Weak dependency of normal traffics in different measurement periods,
if large persistent flows are absent

Two-period intersection: 1 2 3 4 5 6

(a) HTTP Server 224.243.38.27/80
1 22604

2 5.0 % 24598

3 0.8 % 4.2 % 27561

4 0.4 % 0.9 % 4.2 % 29426

5 0.5 % 0.5 % 0.9 % 4.5 % 29456

6 0.3 % 0.5 % 0.4 % 0.8 % 4.2 % 30489

(b) HTTPS Server 224.243.38.27/443
1 40205

2 3.2 % 47119

3 2.0 % 3.2 % 48433

4 1.8 % 1.9 % 3.0 % 60050

5 1.6 % 1.7 % 1.9 % 3.4 % 64332

6 1.7 % 1.8 % 1.8 % 3.6 % 3.9 % 69356

With six measurement periods, subtable (a) lists the cardinality of the intersection
of two element sets Si and Sj for two arbitrary periods i and j: When i D j, we show
the spread jSjj of the jth period; When i > j, we are supposed to show the intersected

spread jSi \ Sjj of the two periods, but we calculate the ratio jSi\Sjj
jSjj instead, in

order to give an impression of how small the dependency between two periods.
Subtable (a) shows that, for any pair of non-neighboring periods, their intersected
spread is less than 1 %, and hence they can be approximated as independent.
Subtable (b) demonstrates a similar phenomenon, where the intersected spreads of
two periods are less than 4 %. Hence, when contacting HTTPS servers, although
network users are more prone to be heavy users that cross multiple periods, the
assumption about rough dependency between different time periods is still valid.

We have also analyzed the traffics of tens of other HTTP and HTTPS servers.
The evaluation results are similar: A legitimate user’s continuous interaction with
a website is pretty short in duration. They only check out necessary information
from one website and don’t linger for long and jump to another website. For the
transient traffic they generated, there exists a rough independence between different
periods. There are two key points of establishing such an independence. The first is
to configure an appropriate length of measurement periods (e.g., larger than 7 min),
in order to let one period contain a normal user’s interaction with a website. The
second is to add a decent spacing between neighboring periods (e.g., 3 min), to
reduce the chance of a user’s activity crossing the borders of two periods. What
we have accomplished is to confine normal uses’ short-term behaviors within one
period. We mainly care about the long-term stealthy activities that span multiple
periods in order to degrade a website’s performance.

84 4 Persistent Spread Measurement

4.3.2 Persistent Spread Estimator

In this subsection, we present the formulas of our persistent spread estimator. The
inputs are a sequence of bitmaps B1, B2, : : :, Bt, and their intersection bitmap B�.
There are two cases for a bit in B� to be set to “1”:

1. it contains at least one persistent elements, or
2. it contains none of the persistent elements, but in each time period, it contains at

least one transient elements.

The probability of the first case is 1 � P�, where P� is the probability for the bit
in B� to contain no persistent elements.

P� D .1 � 1

m
/n� � e� n�

m (4.2)

Here, we have applied the approximation .1 � 1
m /n � e� n

m that works for large
m value.

Let Pi be the probability for a bit of Bi to contain no transient elements in the ith
period. We have

Pi D .1 � 1

m
/ni�n� � e� ni�n�

m .1 � i � t/; (4.3)

where ni � n� is the number of transient elements in the ith period. Hence, the
probability of the second case is P�Q

1�i�t.1 � Pi/, or called the false positive
probability. Note that our modeling of the false positive probability assumes the
rough independence of transient elements at different periods.

Let X�
j is the event that the jth bit in B� is set to “1”. The probability of X�

j is

PrfX�
j g D .1 � P�/C P�Y

1�i�t
.1 � Pi/:

Let Z� be the proportion of bits in B� that remain zeros. We have 1� Z� equals the
arithmetic mean of m random variables:

1 � Z� D 1

m
�
Xm�1

jD0
1X�

j
; (4.4)

where 1X�

j
is the indicator function of X�

j , which equals one when the event
X�

j happens. Since the bits in B� are mutually independent, E.1 � Z�/ D
1
m

Pm�1
jD0 E.1X�

j
/ D E.1X�

j
/. This implies that the expected proportion of bits in B�

that are ones E.1 � Z�/ is equal to the probability PrfX�
j g. Hence,

E.1 � Z�/ � .1 � P�/C P�Y
1�i�t

.1 � Pi/: (4.5)

4.3 Estimator Based on Intersection Bitmap 85

By multiplying both sides of (4.5) by .P�/t�1, we have

.P�/t�1E.Z�/ � .P�/t �
Y

1�i�t
.P� � P�Pi/:

Combining (4.2) and (4.3), we have the following approximation:

Pi � e� ni�n�

m D e� ni
m = e� n�

m � E.Zi/ = P�

Applying the approximation, we have

.P�/t�1E.Z�/ � .P�/t �
Y

1�i�t

�
P� � E.Zi/

�
: (4.6)

Since 1 � Z� is the arithmetic mean of m independent random variables as
shown in (4.4), according to the central limit theorem, Z� approximates a Gaussian
distribution. Its variance is inversely proportional to the bitmap size m, which
have been proved in Appendix 1. Hence, when m is sufficiently large (e.g., a few
thousands), we can substitute the mean value E.Z�/ in (4.6) by an instance value Z�
without producing significant estimation error. By a similar reason, we can replace
E.Zi/ by an instance value Zi. Therefore, we have

. OP�/t�1Z� � . OP�/t �
Y

1�i�t
. OP� � Zi/: (4.7)

Here, an estimation of P� is denoted by OP� with an upper hat.
By observing bitmaps B� and Bi, we can know Z� and Zi, respectively. Hence,

there is only one unknown variable OP� in (4.7). We can solve this equation for
OP�, and then use the relation P� � e� n�

m in (4.2) to obtain an estimation On�. In
the following, we present the formula of the estimation On� for different number of
periods t.

When t D 1, Eq. (4.7) can be simplified as Z� D Z1. This is natural because
we have B� D B1 when there is a single period. Since t D 1, all the flow
elements in bitmap B� are persistent elements. We can estimate their number from
the proportion of bits in B� that are zeros. Hence,

On� D �m ln.Z�/ : (4.8)

When t D 2, Eq. (4.7) becomes

0 � . OP�/2 � . OP� � Z1/. OP� � Z2/ � OP�Z�

� .Z1 C Z2 � Z�/ OP� � Z1Z2:

Hence, we have OP� � Z1Z2

Z1CZ2�Z�

. Combining it with P� � e� n�

m , we can estimate
the persistent spread as

86 4 Persistent Spread Measurement

On� D �m ln. OP�/ � �m ln
� Z1Z2

Z1 C Z2 � Z�
�

D m ln.Z1 C Z2 � Z�/ � m ln.Z1/ � m ln.Z2/: (4.9)

When t D 3, Eq. (4.7) can be converted to

0 �
� X

1�i�3

Zi � Z��. OP�/2 �
� X

1�i<j�3

ZiZj

� OP� C
Y

1�i�3

Zi:

We firstly solve the above equation for OP�, and then use the relation P� � e� n�

m to
estimate persistent spread n� as

On� D m ln

 B �
r

B2 � 4A
� P

1�i�3

Zi � Z�
�

2A

!
; (4.10)

where

A D
Y

1�i�3
Zi, BD

X
1�i<j�3

ZiZj:

When t
 4, because the order of (4.7) about OP� grows to at least three, it is
complicated to obtain a closed-form estimator. Hence, we solve (4.7) by numerical
root-finding algorithms, e.g., Newton–Raphson method.

Firstly, we generate an initial guess of OP�, using OP� � Z�. This approximation
is obtained by dropping the false positive probability P�Q

0�i�t.1 � Pi/ in (4.5).

Secondly, we optimize the current value of OP�, by invoking the following
equation iteratively:

OP� D OP� � z. OP�/

z0. OP�/
;

where

z. OP�/ D . OP�/t � . OP�/t�1Z� �
Y

1�i�t
. OP� � Zi/;

z0. OP�/ D t . OP�/t�1 � .t � 1/. OP�/t�2Z� ��Y
1�i�t

. OP� � Zi/
��X

1�j�t

1

. OP� � Zj/

�
:

Thirdly, when the optimization process converges, we use the best OP� to derive an
estimation of the persistent spread.

On� D �m ln OP� (4.11)

4.4 Analysis of Bitmap-Based Estimator 87

In summary, for an arbitrary t value, we have presented an equation to calculate
the estimation of persistent spread On�. In order to shield the difference in the
estimation equations of n�, we define a unified function ft in the following theorem:

Definition 1 (Bitmap-Based Persistent Spread Estimator). Given an arbitrary
number of periods t (t
 1), a unified estimator function to estimate the persistent
spread is

On� D ft
�
m; Z�; fZig

�
; (4.12)

where Z� is the proportion of bits of the intersection bitmap B� that are zeros, Zi is
the zero ratio of bitmap Bi in the ith period (1 � i � t), and m is the size of each of
the bitmaps. When t is 1, 2, 3 or at least 4, respectively, the function ft corresponds
to Eqs. (4.8), (4.9), (4.10), or (4.11).

4.4 Analysis of Bitmap-Based Estimator

In this section, we analyze the bias and variance of our intersection bitmap-based
estimation On� in Definition 1.

Firstly, we prove that the estimation On� is asymptotically unbiased when the
bitmap size m is sufficiently large. We know that the zero ratio Z� of bitmap
B� approximates a Gaussian distribution, because Z� is the arithmetic mean of a
large quantity of independent random variables as in (4.4). For a similar reason,
the zero ratio Zi of bitmap Bi approximates a Gaussian distribution. From (4.7),
we know that OP� is a polynomial function of Z� and Zi, with continuous first partial
derivatives. According to the multivariate delta-method [1], when the bitmap size m
is enough large, OP� approximately follows a Gaussian distribution, and its expected
value E. OP�/ satisfies

�
E. OP�/

�t�1
E.Z�/ � �

E. OP�/
�t �

Y
1�i�t

�
E. OP�/ � E.Zi/

�
;

which is obtained by substituting Z� by E.Z�/, and Zi by E.Zi/ in (4.7). Combining
the above formula with (4.6), we can derive that E. OP�/ � P�. Therefore, OP�
approximates a Gaussian distribution whose expected value is P�. Further, we have
On� is a function of OP� as On� D �m ln. OP�/. From delta-method [1], On� approximates

a Gaussian distribution with

E. On�/ � �m ln.E. OP�// � �m ln.P�/ D �m ln.e� n�

m / D n�:

Therefore, the persistent spread estimation On� is asymptotically unbiased, when the
bitmap size m is sufficiently large.

88 4 Persistent Spread Measurement

Secondly, we analyze the variance of estimation On� in the following theorem
using the tool of CramKer-Rao bound:

Theorem 3 (Variance of Multi-period Estimators). For our persistent spread
estimator in Definition 1, its variance is

Var. On�/ � n�

�� �
1

.1 � QP/2

�
1
QP C 1

1�QP
� ; (4.13)

where �� D n�

m is the density of persistent elements, SNRi D n�

ni�n�

is the signal-to-
noise ratio in the ith period, and

QP D �
1 � e���

�C e���

Y
1�i�t

�
1 � e���

1
SNRi
�
:

Proof. Please check Appendix 2 for a proof.

From Theorem 3, we derive the standard estimation error as

q
Var. On�/

n� D 1p
m

.r
.��/2 � .1 � QP/2

�
1
QP C 1

1�QP
�
:

The relative standard error is affected by four factors: (1) density of persistent
elements ��, or call it persistent load factor, (2) the number of bits m, (3) signal-
to-noise ratio SNRi, and (4) the number of time periods t. We analyze their impacts
by plotting the relative error against these factors in Fig. 4.2.

Figure 4.2 shows that the estimation accuracy improves as the increase of signal-
to-noise level SNRi, which has been defined as persistent spread n� divided by the
cardinality of transient elements ni�n� in the ith period. Subfigure (a) configures the

St
an

da
rd

 e
rr

or

St
an

da
rd

 e
rr

or

a b

Fig. 4.2 Accuracy of persistent spread estimation with n� D 1000. (a) For each ith period,
SNRi D 0:1. (b) For each ith period, SNRi D 1

4.5 Multi-Virtual Bitmap Estimator 89

SNRi as low as 0.1, and the accuracy ranges between 3 and 40+ % depending on the
load factor. In contrast, subfigure (b) increases SNRi by ten times to 1. Hence, the
accuracy improves and fluctuates between 3 and 6 %.

We focus on Fig. 4.2b, and it tells us that the estimation accuracy improves as
the number of periods t increases. Given more bitmaps B1; B2; : : : ; Bt, our persistent
spread estimator can to reduce the false positive probability P�Q

1�i�t.1� Pi/, and
better filter the transient contacts. This plot also shows that the estimation accuracy
deteriorates as the density of persistent elements �� increases. The explanation is
that our estimation relies on the proportion of zero bits in bitmap B�. If the density
of persistent elements �� grows, B� will become crowded, and when �� exceeds a
bound, the proportion of zero bits in B� approach zero, which cannot be used for
accurate estimation.

4.5 Multi-Virtual Bitmap Estimator

In the design of our previous bitmap-based estimator, each flow is allocated with a
bitmap to record its elements in a time period, and all the bitmaps are separated
and with equal size. Because bitmap algorithm only supports the counting of
cardinalities linear to bitmap size [12], this design best fits the case that the flow
spreads uniformly distribute. However, the distribution of flow spreads is extremely
unbalanced in real networks, especially in core networks. We plot a distribution
of flow spreads in Fig. 4.3, which is obtained from real-world traffic traces from
CAIDA [11]. In subfigure (a) where the measurement duration is set to 1 min,
there are about a million of flows whose spreads are smaller than 100. In contrast,
only a few hundred flows have their spreads larger than 1000. Such an unbalanced
distribution of flow spreads can also be witnessed in subfigure (b) where the
measurement duration extends to 20 min. Throughout the chapter, we use the term

a b

Fig. 4.3 Flow spread distribution by analyzing CAIDA traces. (a) Duration = 1 min. (b) Dura-
tion = 20 min

90 4 Persistent Spread Measurement

mouse flows to refer to the flows with spreads less than one hundred, and taking
the majority of all flows. The term elephant flows is used for the flows with
extraordinarily larger spreads than the rest. They typically correspond to the server
machines with a large number of concurrent users.

Due to the uneven distribution of flow spreads, if allocating all the flows with
separated and equal-sized bitmaps, it incurs a significant waste of precious space of
on-chip SRAM, which we explain as follows. Since the bitmap method can only
count cardinalities linear to bitmap size [12], we have to configure the bitmap
size large enough and proportional to the spreads of elephant flows. Otherwise,
these bitmaps, when receiving too many elements from elephant flows, have most
their bits to be “1”, which severely degrades the estimation accuracy. However,
we cannot predict which flows are elephant flows, and to guarantee the estimation
accuracy, we have to allocate all the flows with equal-sized bitmaps that are large
enough to accommodate the elephant flows. Therefore, for mouse flows with small
spreads, their bitmaps are inevitably sparse with most bits being “0”, which causes a
significant waste of the expensive SRAM space, especially considering the fact that
the majority of flows witnessed by the router are mouse flows.

To mitigate the memory waste due to uneven distribution of flow spreads, we
adopt the idea of virtualization: the bitmaps of all the flows are no longer separated
but share a common bit pool, which is called the physical bitmap. Then, the bitmap
of each flow draws its bits pseudo-randomly from the common bit pool, which is
called a virtual bitmap since it does not physically exist. As illustrated in Fig. 4.4,
the bits of a virtual bitmap uniformly distribute in the physical bitmap. For all the
virtual bitmaps, we configure a unified size that is large enough to accommodate
elephant flows. Through the bit sharing in physical bitmap, the elephant flows can
“borrow” bits from the under-used virtual bitmaps of mouse flows. The physical
bitmap is denoted by M, which is an array with u bits allocated from on-chip SRAM.
We will describe in detail how to utilize this data structure to estimate the persistent
spreads simultaneously for multiple flows.

The idea of virtual bitmaps sharing a physical space has been partially discussed
in prior literature [13]. However, they concentrate on estimating the cardinality of
a single set. In contrast, we estimate the cardinality of intersection of multiple sets,
which are collected in different time domains.

Fig. 4.4 Multiple virtual bitmaps share bits in a physical bitmap

4.5 Multi-Virtual Bitmap Estimator 91

4.5.1 Physical Bitmap Encoding

In each time period, the router will observe a large number of traffic flows. For each
flow, the router stores its elements to the physical bitmap M, which we explain in
details as follows.

Whenever a packet arrives whose header is hsrc; dsti, the router uses its destina-
tion address to categorize it to the flow dst, and treats its source address src as an
element of flow dst, which is mapped to the flow’s virtual bitmap. Assume the jth
bit in the virtual bitmap has been set to one by the element:

j D H.src/ mod m; (4.14)

where H is a hash function and m is the size of virtual bitmaps which is sufficiently
large to accommodate an elephant flow.

According to the bit sharing scheme in Fig. 4.4, the jth (0 � j < m) bit in the
virtual bitmap will be drawn from or mapped to the ith (0 � i < u) bit in the physical
bitmap:

i D Hdst.j/ mod u;

where Hdst is a hash function used by the flow dst for bit mapping. It can be
implemented from a master hash function H:

Hdst.j/ D H.j˚ dst/; (4.15)

where ˚ is bitwise XOR or string concatenation to combine two key values j and
dst. Applying Eq. (4.14), we have

H.j˚ dst/ D H
�
.H.src/ mod m/˚ dst

�

In summary, when the packet hsrc; dsti arrives, the following bit in the physical
bitmap M will be set to one:

MŒi� WD 1;

where i D H
�
.H.src/ mod m/˚ dst

�
mod u.

When the time period terminates, the physical bitmap M will be downloaded
from on-chip SRAM to main memory. Assume we have t physical bitmaps, denoted
by M1, M2, . . . , Mt, which correspond to t consecutive time periods.

92 4 Persistent Spread Measurement

4.5.2 Persistent Spread Estimation

In this subsection, we describe how to use the sequence of physical bitmaps M1,
M2, . . . , Mt, to estimate the persistent spread for a particular flow dst. An intuitive
method is that, from an arbitrary physical bitmap M, we can extract a virtual bitmap
B that belongs to the flow dst.

B D ˝MŒHdst.0/�; MŒHdst.1/�; : : : ; MŒHdst.m � 1/�
˛

Here, we use the relation that the jth (0 � j < m) bit in virtual bitmap has been
mapped to the ith bit in physical bitmap as i D Hdst.j/ mod u, and we omit mod u
for simplicity. Since we have t physical bitmaps M1, M2, . . . , Mt, we can extract t
virtual bitmaps, noted as B1, B2, . . . , Bt. Then, we can apply our previous algorithm
in Sect. 4.3.2, to filter the transient elements and estimate the number of persistent
elements hiding in the virtual bitmap of flow dst.

However, this method has the problem of overestimating the persistent spread of
flow dst. In the flow’s virtual bitmap, the persistent elements may not belong to flow
dst alone. Since the virtual bitmap of a flow draws bits from a common bit pool that
is shared with other flows, the bits in the virtual bitmap may be assigned by other
flows to “1”. If some of the “1” bits happen to be set by persistent elements coming
from other flows, then these bits will be set to “1” in all the virtual bitmaps B1, B2,
. . . , Bt in t time periods, which causes the overestimation of persistent spread of the
flow dst.

It may appear that transient elements from other flows may also cause overes-
timation, since they increase the number of elements ni that are contained in the
virtual bitmap Bi and aggravate the false positive probability. However, when we use
zero ratio of Bi to estimate the number of elements in the virtual bitmap of ith period,
the estimation result already counts the transient elements coming from other flows.
Hence, when we estimate the number of persistent elements in virtual estimator of
flow dst, there won’t be any overestimation. The major source of overestimating
flow dst’s persistent spread is the persistent elements from other flows.

Our solution is to compensate the estimation bias due to persistent elements
coming from other flows. Let n� be the number of persistent elements that belong
to flow dst, n�

m be the number of persistent elements in virtual bitmap of flow dst,
and n�

u be the number of persistent elements in physical bitmap M. Our basic idea
is that the total number of persistent elements from other flows is n�

u � n�, and
they uniformly distribute in the entire physical bitmap, which are noises. Let X be
the number of noise elements that are mapped to a bit of physical bitmap M. We
know that X follows a binomial distribution: X 	 Binom.n�

u � n�; 1
u /. The expected

number of noises elements mapped to a virtual bitmap equals to E.mX/, where m is
the number of bits in a virtual bitmap.

E.n�
m � n�/ D E.mX/ D mE.X/ D m

u
.n�

u � n�/

4.6 Simulation Evaluation 93

According to the laws of large numbers in probability theory, when the number of
independent variables m is large enough, the variance Var. n�

m�n�

E.n�

m�n�/
/ approaches to

zero. Hence, when the number of trials m is large, the expected value E.n�
m � n�/

can be approximated by its instance value n�
m � n�. Then,

n�
m � n� � E.n�

m � n�/ D m

u
.n�

u � n�/:

By conversion, we have an estimator of persistent spread n�.

n� � um

u � m
.
n�

m

m
� n�

u

u
/:

In summary, our estimator can be divided into three steps.
First, we estimate n�

m—the number of persistent elements that are mapped to the
virtual bitmap of flow dst:

On�
m D ft

�
m; Z�

m; fZm;ig
�

where ft is the persistent spread estimator in (4.12), m is the number of bits in virtual
bitmaps, Zm;i is the proportion of bits in the ith virtual bitmap Bi that are zeros, and
Z�

m is the ratio of bits in B� D B1 ^ B2 ^ : : : ^ Bt that are zeros.
Second, we estimate n�

u —the number of persistent elements in physical bitmap:

On�
u D ft

�
u; Z�

u ; fZu;ig
�
;

where ft is the persistent spread estimator in (4.12), u is the number of bits in
physical bitmap, Zu;i is the proportion of bits in physical bitmap Mi that are zeros,
and Z�

i is the ratio of bits in M� D M1 ^M2 ^ : : : ^Mt that are zeros.
Third, we compensate the positive bias in On�

m due to noise persistent elements
from other flows, and we obtain the unbiased estimation On� below, for flow dst’s
persistent spread.

On� D um

u � m

� On�
m

m
� On

�
u

u

�
(4.16)

4.6 Simulation Evaluation

In this section, we use simulation to evaluate the estimators for persistent spread
measurement: One is based on the intersection of bitmaps, and the other is the
multi-virtual bitmaps. Our goal is to design an estimator that is able to use the
tight space on on-chip SRAM to deliver high accuracy. Hence, in our experiments,
the memory cost, when averaging over all elements appearing in an arrival packet

94 4 Persistent Spread Measurement

stream, is less than 1 bit per element. The only related work that can work in such
tight space is a method based on a continuous variant of Flajolet–Martin sketches,
named FMSK for short [2]. We will compare our methods with FMSK in estimation
accuracy. We will show the impact of the number of periods t and the signal-to-noise
ratio SNRi on estimation accuracy, which is not quantified by previous works. We
will also compare our methods with the aforementioned hash table method storing
partial signatures (call it partial hash for short), to show the power of our methods
in compressing memory cost.

4.6.1 Experiment Setup

We simulate the real-world network traffic using the following parameters. The
number of flows that can be observed by the gateway router is configured to 1024,
which simulates a small server farm. For a flow, the average number of elements
in the ith (1 � i � t) period is configured to 1200, which simulates multiple users
concurrently accessing a single server. Some of the flow elements are persistent
elements, which exist throughout the t periods, and the rest are transient elements.
In each period, we control the ratio of persistent elements to the transient elements
by signal-to-noise ratio SNRi. For these transient elements, we assume that 90 % of
them stay within one period, and the remaining 10 % are heavy users that cross the
boundaries between periods.

For fair comparison, we allocate the same size of memory for partial hash,
FMSK, and our methods. As listed in Table 4.3, each of the three method is given
roughly 1.2M bits SRAM, which means each flow gets 1144 bits on average for its
spread estimation. FMSK divides these bits into thirty five float numbers, each of
which is 32 bits long and can perform the counting independently. Their stochastic
averaging is treated as the final estimation. Our bitmap method uses these bits as a
bitmap to record the flow elements (whose expected number is 1200). Our multi-
virtual bitmap method does not separate the allocated SRAM space into equal-sized
bitmaps. It instead lets the virtual bitmaps to share the space. The length of each

Table 4.3 Settings of algorithm parameters

Algorithm Memory Parameters

Partial hash � 9.1 Mbit Flow signature = 8 bit, buckets per flow =
32, source signature = 4 bit

FMSK � 1.2 Mbit For a flow, number of buckets = 35. In one
bucket, an FMSK = 32 bit

Bitmap � 1.2 Mbit For one flow, the size of each bitmap =
1144 bit

Multi-virtual bitmap � 1.23 Mbit virtual bitmap size = 6 Kbit, physical
bitmap size = 1.23 Mbit

4.6 Simulation Evaluation 95

virtual bitmap is configured as large as 6k bits to accommodate elephant flows. For
the most basic method based on partial hashing, we give it 9.1M bits SRAM to show
the power of our methods (only having 1.2M bits) in compressing memory cost.

4.6.2 Estimation Accuracy and Operating Range

In this subsection, we compare the four methods (listed in Table 4.3) in esti-
mation accuracy and operating range. The comparison results are presented in
Figs. 4.5, 4.6, 4.7, and 4.8.

Figure 4.5 shows that, although the partial hash method is given 9.1M bits
memory that is eight times larger than other methods, its estimation is negatively
biased. This is because its operating range is merely 24 � 32 D 512, where 4 is
the size of partial signature stored in one bucket and 32 is the number of buckets
allocated for one flow. When the persist spread exceeds this range, it is severely
underestimated as depicted in Fig. 4.5.

Figure 4.6 states that FMSK can use only 1.2M bits memory to generate unbiased
estimations. However, its accuracy is far from satisfactory. This is because FMSK,
similar to Flajolet–Martin sketches [4], has the problem of slow start: it has low

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

partial hash, t=2

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

partial hash, t=3

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

partial hash, t=4

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

partial hash, t=10

Fig. 4.5 Persistent spread estimation of partial signature, with SNRi D 1 and number of periods
t D 2; 3; 4; 10

96 4 Persistent Spread Measurement

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

FMSK, t=2

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

FMSK, t=3

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

FMSK, t=4

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

FMSK, t=10

Fig. 4.6 Persistent spread estimation using FMSK algorithm, with SNRi D 1 and number of
periods t D 2; 3; 4; 10

inaccuracy when the cardinality to be estimated is on the scale of bits allocated,
which is about 1120 bits in the simulation. We will explain later that FMSK has
another inadequacy that its accuracy degrades when the number of time periods t
grows.

Figure 4.7 shows that our bitmap method, when given the same memory of
1.2M bits, can improve estimation accuracy significantly as compared with FMSK.
Its shortcoming, however, is its small operating range: When the persistent spread
exceeds a point (about 2000 in Fig. 4.7), its estimations are strongly biased. This is
because, for elephant flows, their bitmaps will receive too much elements, which set
most of their bits to one and cause severe bias. This shortcoming can be overcome
by our multi-virtual bitmap method, which permits elephant flows to borrow bits
from small flows, to extend their operating range. In Fig. 4.8, this method provides
accurate estimations even for persistent spreads as large as 10,000. This is because
the size of a virtual bitmap (6k bits) is configured five times larger than the size of a
bitmap (1144 bits), as shown in Table 4.3.

4.6 Simulation Evaluation 97

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

bitmap, t=2

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

bitmap, t=3

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

bitmap, t=4

 0

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

es
tim

at
ed

 v
al

ue

true value of persistent spread

bitmap, t=10

Fig. 4.7 Persistent spread estimation using bitmap algorithm, with SNRi D 1 and number of
periods t D 2; 3; 4; 10

4.6.3 Impact of Time Period t on Accuracy

An interesting feature of our multi-virtual bitmap method is that its estimation
accuracy improves when the number of time periods t increases. Figure 4.8 depicts
the case of t D 2 in the leftmost subfigure, and illustrates t D 10 in the rightmost. It
is a useful feature that permits network operators to set arbitrarily large t values to
differentiate persistent and transient elements.

In contrast, the accuracy of FMSK declines when t value grows, as illustrated
in Fig. 4.6. When t grows to 10, its estimation error becomes even larger than
50 %. This is because the FMSK method estimates the persistent spreads from the
fraction of the intersected set to the union set of all t periods: jS1\S2:::\Stj

jS1[S2:::[Stj . As t
value grows, the size of union set jS1 [S2 : : : [Stj expands, which reduces the
fraction of intersected set and degrades the estimation accuracy. Our bitmap method
is different. It detects the existence of a persistent element from the phenomenon
that a bit is set to “1” in all the bit arrays B1, B2, : : :, Bt. The false positive
probability, which the probability that such a bit is occupied only by transient
elements, decreases as t value grows, which is the last term P�Q

1�i�t.1 � Pi/

in (4.5).

98 4 Persistent Spread Measurement

Fig. 4.8 Persistent spread estimation using multi-virtual bitmap algorithm, with SNRi D 1

4.6.4 Impact of Signal-to-Noise Ratio SNRi on Accuracy

We present another set of simulation results in Figs. 4.9 and 4.10, to study the impact
of signal-to-noise ratio on estimation accuracy. The ability of tolerating heavy noise
is important, which makes the designed estimator more flexible to use in practice.
First, we evaluate the performance of FMSK, by comparing Figs. 4.6 and 4.9 which
configure the signal-to-noise ratio to 1 and 0.4, respectively. They show that the
accuracy of FMSK degrades severely as the noise level increases. Its estimation
even becomes biased in the last subfigure of Fig. 4.9. Second, we evaluate the
noise toleration ability of our multi-virtual bitmap method, by comparing Figs. 4.8
and 4.10 which configure the signal-to-noise ratio to 1 and 0.4, respectively. The
two figures show that the accuracy of our method also degrades, which is consistent
with the analysis results in Fig. 4.2. However, the degree of degradation is pretty
modest, and our method can still render satisfactory estimation accuracy when the
signal-to-noise ratio is only 0.4 in Fig. 4.10.

4.7 Related Work 99

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 3000 4500 6000

es
tim

at
ed

 v
al

ue

true value of persistent spread

FMSK, t=2

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 3000 4500 6000

es
tim

at
ed

 v
al

ue

true value of persistent spread

FMSK, t=3

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 3000 4500 6000

es
tim

at
ed

 v
al

ue

true value of persistent spread

FMSK, t=4

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 3000 4500 6000

es
tim

at
ed

 v
al

ue

true value of persistent spread

FMSK, t=10

Fig. 4.9 Persistent spread estimation using FMSK method, with SNRi D 0:4 and number of
periods t D 2; 3; 4; 10

4.7 Related Work

An important branch of network traffic measurement is the passive measurement
techniques, which use built-in components of a router or switcher to silently watch
the traffic as it passes by. The traversed packets, according to certain fields in the
packet header, are classified into different categories, each of which is called a flow.
For an individual flow, several kinds of measurements can be taken, including the
flow size (i.e., the number of packets or bytes or occurrences of certain events in
one measurement period) [7], the flow spread (i.e., the number of distinct flow
elements) [3, 10, 13]. This chapter introduces a new problem of measuring the flow’s
persistent spread (i.e., the number of distinct elements that persist through t time
periods), which can be used to detect the long-term stealthy network activities in the
background of transient behavior of legitimate users.

Our problem of persistent spread estimation has practical meanings to detect
stealthy network activities that last for long periods, including stealthy DDoS
attacks, stealthy network scan, and server popularity forging, just to name a few.
For this problem, there is a related work which detects the stealthy network scan [6].
It, however, works in spatial domain and detects the presence of a set of hosts that

100 4 Persistent Spread Measurement

Fig. 4.10 Persistent spread estimation using multi-virtual bitmap algorithm, with SNRi D 0:4

connect to a sufficiently large number of unique destinations within a given time
window. In contrast, we detect the network scan in temporal domain, and check
whether a source node probes different network sections at different time windows.
Moreover, our work is a generalized primitive that can detect many other kinds of
stealthy activities.

To measurement the persistent spread for each flow, the key challenge is the
requirement of low memory cost, due to the limited size of on-chip SRAM. The
estimators of per-flow measurements [2, 3, 10] allocate each flow a separated
equal-sized data structure. These methods ignore the fact that the flow spreads
are extremely imbalanced, in real-world network traffic. Some flows are “elephant
flows” whose spreads can be thousands of times larger than those of small flows. As
a result, their counting data structures, when dealing with elephant flows, become
overly dense due to the injection of too many elements. It may appear that, if
implementing the counters by Flajolet–Martin sketches [4] or HyperLogLog [5],
they can work well with the elephant flows. However, the accuracy of these modern
cardinality estimators strongly depends on the space allocated for one estimator.
When there are too many flows, the memory available for one estimator is extremely
limited.

It is desirable that elephant flows borrow bits from small flows, to improve their
estimation accuracy and extend the operating range, To implement the bit lending,
a viable solution is to let the bits of virtual bitmaps uniformly distribute in the
allocated SRAM space, which have been illustrated in Fig. 4.4. Although this idea

4.8 Summary 101

of virtual bitmap has been discussed in literature [8, 13], the previous works deal
with only one virtual bitmap for each flow, in order to estimate the flow’s spread.
In contrast, we consider t virtual bitmaps together (collected in t time periods), and
estimate their intersection, i.e., the number of elements that persist through the t
periods.

For the problem of persistent spread estimation, a critical design choice is what
data structure we should adopt to record the information for each flow. The literature
in [2] uses a continuous variant of Flajolet–Martin sketches. But we choose the
bitmap [12], for the following two reasons. The bitmap structure can achieve higher
accuracy than FM sketches and HyperLogLog, if given sufficient memory [9]. This
structure, if further enhanced by our multi-virtual bitmaps, can extend the operating
range to be sufficiently large for our application.

4.8 Summary

In this chapter, we have presented a new primitive for passive network measurement,
called persistent spread estimation, which can detect the long-term stealthy network
activities in the background of short-term activities of legitimate users. To solve this
problem in tight memory space, this chapter has presented a compact data structure
called multi-virtual bitmaps, which is suitable to deploy in the size-limited on-chip
SRAM of high-speed routers. The simulation shows that our estimator can provide
satisfactory accuracy and operating range, using small memory of less than 1 bit
per-flow element.

Our estimator brings two other advantages as compared with previous work.
Its estimation accuracy improves as the number of measurement periods increases,
because our method can more effectively filter the short-term behavior of legitimate
users. Its operating range of producing effective measurements has been extended if
compared with bitmap method. The latter benefit originates from our data structure
named multi-virtual bitmaps, which permits elephant flows to “borrow” bits from
mouse flows by sharing bits in a common bit pool. These advantages have been
verified by both analysis and experimental results.

Appendix 1: Bias Analysis of Bitmap-Based Spread Estimator

We prove that our bitmap-based estimator ft in Definition 1 is asymptotically
unbiased. The estimator ft is obtained in Sect. 4.3 by solving the following equation
set, which has tC 1 equations and tC 1 unknowns (i.e., P� and Pi):

E.Zi/ D P�Pi .1 � i � t/

E.Z�/ D P� � P�Y
1�t�t

.1 � Pi/

102 4 Persistent Spread Measurement

Getting P� by solving the above equation set can be regarded a variant of maximum
likelihood estimation. In the process, the only operations that will produce estima-
tion bias are the replacement of expectations E.Zi/ and E.Z�/ by the observations
Zi and Z�. We prove that, when the bitmap size m is large enough, the replacement
produces negligibly small error, and the estimator ft thus is asymptotically unbiased.

In bitmap Bi of the ith period, the number of zero bits mZi follows binomial
distribution, since different bits are mutually independent roughly. This binomial
distribution can be approximated as Gaussian distribution, when the array size m
is sufficiently large [12]. For this Gaussian distribution, its mean value E.mZi/ is
me� ni

m , and its variance is

Var.mZi/ D m e� ni
m .1 � .1C ni

m / e� ni
m /:

Then, we know that the variance Var.Zi/ approaches zero when m is sufficiently
large. For similar reasons that the zero ratio Z� is some kind of stochastic averaging
in bitmap B�, the variance Var.Z�/ approaches zero asymptotically.

Appendix 2: Variance of Bitmap-Based Spread Estimator

We prove the estimator variance in Theorem 3. The likelihood function of persistent
spread n� using observation Y� is

L .n� jY�/ D .1 � QP/Y� � QPm�Y�

; (4.17)

where Y� D mZ� is the number of zero bits in bitmap B�, and

QP D .1 � P�/C P�Q
1�i�t.1 � Pi/

D �
1 � e� n�

m
�C e� n�

m
Q

1�i�t

�
1 � e� ni�n�

m
�
: (4.18)

The meaning of (4.17) is the probability of observing Y� zero-state bits and m �
Y� one-state bits in the intersection bitmap B�, given the facts of persisting spread
n� and the signal-to-noise ratios SNRi in each period. The symbol QP denotes the
probability for a bit to be one in bitmap B�.

For any estimator of n� based on the observation Y� and m � Y�, its variance
satisfies the CramKer-Rao inequality below:

Var. On� jY�/
 1
I.n�/

;

where I.n�/ is the Fisher information which can be calculated using the likelihood
function L in (4.17).

I.n�/ D �E
h

@2 lnL .n� j Y�/

.@n�/2

i

References 103

For the log-likelihood function lnL in (4.17), its first-order derivative and
second-order derivative are as follows:

@ lnL
@n�

D 1
L

@L
@n�

D @QP
@n�

�
m�Y�

QP � Y�

1�QP
�

@2 lnL
.@n�/2 D @2 QP

.@n�/2

�
m�Y�

QP � Y�

1�QP
�
�
�

@QP
@n�

�2�
m�Y�

QP2
C Y�

.1�QP/2

�

Because the expected value of Y� is E.Y�/ D m.1 � QP/, the expected value of
m�Y�

QP � Y�

1�QP equals zero. Hence,

I.n�/ D � E
h

@2 lnL .n� j Y�/

.@n�/2

i
D
�

@QP
@n�

�2�
m
QP C m

1�QP
�
: (4.19)

The first-order derivative @QP
@n�

required by the above equation can be derived
from (4.18), assuming that the signal n� is independent with the noise ni � n� (i.e.,
@.ni�n�/

@n�

D 0).

@QP
@n�

D 1
m

h
e� n�

m � e� n�

m
Q

1�i�t

�
1 � e� n�

m
1

SNRi
�i D 1

m .1 � QP/

Finally, by replacing @QP
@n�

in (4.19) with 1
m .1 � QP/ and then using the relation

Var. On� jY�/
 1
I.n�/

, we can obtain the inequality for estimator variance in
Theorem 3.

References

1. Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Duxbury Press, Pacific Grove (2002)
2. Chen, A., Cao, J., Bu, T.: A simple and efficient estimation method for stream expression

cardinalities. In: Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB ’07, pp. 171–182 (2007)

3. Estan, C., Varghese, G., Fish, M.: Bitmap algorithms for counting active flows on high-speed
links. IEEE/ACM Trans. Netw. (ToN) 14(5), 925–937 (2006)

4. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for database applications. J.
Comput. Syst. Sci. 31(2), 182–209 (1985)

5. Flajolet, P., Fusy, E., Gandouet, O., Meunier., F.: HyperLogLog: the analysis of a near-optimal
cardinality estimation algorithm. In: Proceedings of the AOFA: International Conference on
Analysis of Algorithms (2007)

6. Gao, Y., Zhao, Y., Schweller, R., Venkataraman, S., Chen, Y., Song, D., Kao, M.: Detecting
stealthy spreaders using online outdegree histograms. In: Proceedings of the IEEE IWQoS,
pp. 145–153 (2007)

7. Lu, Y., Montanari, A., Dharmapurikar, S., Kabbani, A., Prabhakar, B.: Counter braids: a novel
counter architecture for per-flow measurement. In: Proceedings of the ACM SIGMETRICS
(2008)

104 4 Persistent Spread Measurement

8. Marold, A., Lieven, P., Scheuermann, B.: Distributed probabilistic network traffic measure-
ments. In: 17th GI/ITG Conference on Communication in Distributed Systems (KiVS), vol. 17,
pp. 133–144 (2011)

9. Metwally, A., Agrawal, D., Abbadi, A.E.: Why go logarithmic if we can go linear? Towards
effective distinct counting of search traffic. In: Proceedings of the EDBT (2008)

10. Roesch, M.: Snort—lightweight intrusion detection for networks. In: Proceedings of 13th
Systems Administration Conference, USENIX (1999)

11. The CAIDA UCSD Anonymized 2013 Internet Traces - January 17 (2013). http://www.caida.
org/data/passive/passive_2013_dataset.xml

12. Whang, K.Y., Vander-Zanden, B.T., Taylor, H.M.: A linear-time probabilistic counting algo-
rithm for database applications. ACM Trans. Database Syst. 15(2), 208–229 (1990)

13. Yoon, M., Li, T., Chen, S., Peir, J.K.: Fit a spread estimator in small memory. In: Proceedings
of the IEEE INFOCOM (2009)

http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.caida.org/data/passive/passive_2013_dataset.xml

	Contents
	1 Introduction
	1.1 Big Network Data
	1.2 Online Challenge
	1.3 Offline Challenge
	1.4 Fundamental Primitives
	1.5 Scalable Counter Architectures for Per-Flow Size Measurement
	1.6 Hyper-Compact Virtual Estimators for Per-Flow Cardinality Measurement
	1.7 Memory-Efficient Estimators for Persistent Spread Measurement
	1.8 Outline of the Book
	References

	2 Per-Flow Size Measurement
	2.1 Problem Statement
	2.2 Prior Art
	2.3 Design of Counter Tree Architecture
	2.3.1 Motivation
	2.3.2 Two-Dimensional Counter Sharing
	2.3.3 Counter Tree Architecture
	2.3.4 Counting Range
	2.3.5 Design Overview

	2.4 Online Packet Recording
	2.4.1 Recording
	2.4.2 Number of Memory Accesses

	2.5 Counter Tree-Based Estimation
	2.5.1 CTE Method
	2.5.2 Analysis of

	2.6 Counter Tree-Based Maximum Likelihood Estimation
	2.6.1 CTM Method
	2.6.2 Analysis of

	2.7 Enhanced Counter Tree Architecture
	2.7.1 Motivation
	2.7.2 Counters with Status Bits
	2.7.3 Recording and Estimation

	2.8 Experimental Evaluation
	2.8.1 Experiment Setup
	2.8.2 Processing Time for Recording a Packet
	2.8.3 Estimation Accuracy and Range
	2.8.4 Impact of b, r, and d
	2.8.5 Comparison of CTE and E-CTE
	2.8.6 Scalability of Counter Tree

	2.9 Summary
	References

	3 Per-Flow Cardinality Measurement
	3.1 Problem Statement
	3.2 Prior Art
	3.2.1 Hash Table and Bitmap
	3.2.2 MultiResolutionBitmap and PCSA
	3.2.3 LogLog and HyperLogLog
	3.2.4 Performance Summary

	3.3 Register Sharing and Virtual Estimators
	3.3.1 Motivation
	3.3.2 Sharing at Bit Level?
	3.3.3 Register Sharing and Virtual Estimators
	3.3.4 Counter Sharing for Flow Size—A Different Problem

	3.4 A Framework for Virtual-Estimator Solutions
	3.5 Virtual HyperLogLog Estimator
	3.5.1 Record Flow Elements in Virtual Estimator
	3.5.2 Flow Cardinality Estimation

	3.6 Estimation Bias and Variance
	3.6.1 Estimation Bias
	3.6.2 Estimation Variance
	3.6.3 Relative Standard Error

	3.7 Experimental Evaluation
	3.7.1 Estimation Accuracy in Tight Memory
	3.7.2 Impact of Value s on vHLL
	3.7.3 Impact of Overall Traffic
	3.7.4 A Case Study: Detect Super Destinations

	3.8 Summary
	References

	4 Persistent Spread Measurement
	4.1 Problem Statement
	4.2 Preliminary Solutions
	4.2.1 Hash Table Solutions
	4.2.2 Bitmap-Based Method

	4.3 Estimator Based on Intersection Bitmap
	4.3.1 Analysis of Real Network Traces
	4.3.2 Persistent Spread Estimator

	4.4 Analysis of Bitmap-Based Estimator
	4.5 Multi-Virtual Bitmap Estimator
	4.5.1 Physical Bitmap Encoding
	4.5.2 Persistent Spread Estimation

	4.6 Simulation Evaluation
	4.6.1 Experiment Setup
	4.6.2 Estimation Accuracy and Operating Range
	4.6.3 Impact of Time Period t on Accuracy
	4.6.4 Impact of Signal-to-Noise Ratio SNRi on Accuracy

	4.7 Related Work
	4.8 Summary
	Appendix 1: Bias Analysis of Bitmap-Based Spread Estimator
	Appendix 2: Variance of Bitmap-Based Spread Estimator
	References

